ハイパースペクトル画像分析の技術と応用<br>Techniques and Applications of Hyperspectral Image Analysis

個数:

ハイパースペクトル画像分析の技術と応用
Techniques and Applications of Hyperspectral Image Analysis

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9780470010860
  • DDC分類 621.367

基本説明

Discusses how high-quality images of large data files can be structured and archived.

Full Description

Techniques and Applications of Hyperspectral Image Analysis gives an introduction to the field of image analysis using hyperspectral techniques, and includes definitions and instrument descriptions. Other imaging topics that are covered are segmentation, regression and classification. The book discusses how high quality images of large data files can be structured and archived. Imaging techniques also demand accurate calibration, and are covered in sections about multivariate calibration techniques. The book explains the most important instruments for hyperspectral imaging in more technical detail. A number of applications from medical and chemical imaging are presented and there is an emphasis on data analysis including modeling, data visualization, model testing and statistical interpretation.

Contents

Preface. List of Contributors.

List of Abbreviations.

1 Multivariate Images, Hyperspectral Imaging: Background and Equipment (Paul L. M. Geladi, Hans F. Grahn and James E. Burger).

2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing, Technology and Industry (Kim H. Esbensen and Thorbjørn T. Lied).

3 Clustering and Classification in Multispectral Imaging for Quality Inspection of Postharvest Products (Jacco C. Noordam and Willie H. A. M. van den Broek).

4 Self-modeling Image Analysis with SIMPLISMA (Willem Windig, Sharon Markel and Patrick M. Thompson).

5 Multivariate Analysis of Spectral Images Composed of Count Data (Michael R. Keenan).

6 Hyperspectral Image Data Conditioning and Regression Analysis (James E. Burger and Paul L. M. Geladi).

7 Principles of Image Cross-validation (ICV): Representative Segmentation of Image Data Structures (Kim H. Esbensen and Thorbjørn T. Lied).

8 Detection, Classification, and Quantification in Hyperspectral Images Using Classical Least Squares Models (Neal B. Gallagher).

9 Calibration Standards and Image Calibration (Paul L. M. Geladi).

10 Multivariate Movies and their Applications in Pharmaceutical and Polymer Dissolution Studies (Jaap van der Weerd and Sergei G. Kazarian).

11 Multivariate Image Analysis of Magnetic Resonance Images: Component Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA) (Brian Antalek, Willem Windig and Joseph P. Hornak).

12 Hyperspectral Imaging Techniques: an Attractive Solution for the Analysis of Biological and Agricultural Materials (Vincent Baeten, Juan Antonio Fernández Pierna and Pierre Dardenne).

13 Application of Multivariate Image Analysis in Nuclear Medicine: Principal Component Analysis (PCA) on Dynamic Human Brain Studies with Positron Emission Tomography (PET) for Discrimination of Areas of Disease at High Noise Levels (Pasha Razifar and Mats Bergström).

14 Near Infrared Chemical Imaging: Beyond the Pictures (E. Neil Lewis, Janie Dubois, Linda H. Kidder and Kenneth S. Haber).

Index.

最近チェックした商品