Explainable AI in Clinical Practice : Methods, Applications, and Implementation

個数:
  • 予約

Explainable AI in Clinical Practice : Methods, Applications, and Implementation

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 440 p.
  • 言語 ENG
  • 商品コード 9780443441110

Full Description

Explainable AI in Clinical Practice: Methods, Applications, and Implementation bridges the gap between artificial intelligence capabilities and their practical implementation in healthcare. As AI systems become prevalent in clinical decision-making, transparency and explainability are crucial. This volume unites leading experts to provide a comprehensive framework for implementing explainable AI, ensuring that AI-driven decisions are transparent, trustworthy, and clinically sound. The book explores applications of explainable AI in diagnostic support and treatment planning, offering insights into making AI systems interpretable and accountable. Through real-world case studies and ethical frameworks, readers learn to transform opaque AI systems into tools that enhance clinical practice while maintaining high patient care standards. Targeted solutions cater to diverse stakeholders in the healthcare AI ecosystem. Healthcare professionals gain confidence in integrating AI tools, while technical teams receive implementation guidelines. This book is essential for anyone seeking to navigate the complexities of AI in healthcare responsibly and effectively.

Contents

Section I: Foundations
1. Foundations of AI in Healthcare
2. Introduction to XAI in Healthcare
3. Understanding the Need for Transparency in Clinical AI
4. Theoretical Frameworks for XAI in Medicine
5. AI Bias and Fairness in Clinical Applications
6. Evaluation Frameworks for Healthcare XAI

Section II: Methods and Technologies
7. XAI Techniques for Medical Image Analysis
8. Natural Language Processing in Clinical Documentation
9. Time Series Analysis for Patient Monitoring
10. Integration of Multiple Data Modalities

Section III: Clinical Applications
11. XAI in Diagnostic Support Systems
12. Transparent AI for Treatment Planning
13. Risk Prediction and Preventive Care
14. Drug Discovery and Development
15. Performance Metrics and Quality Assurance
16. Integration with Clinical Workflows

Section IV: Ethical and Regulatory Considerations
17. Ethics of Transparent AI in Healthcare
18. Privacy and Security Considerations
19. Regulatory Compliance and Standards
20. Patient Trust and Acceptance

Section V: Future Directions
21. Emerging Trends and Technologies
22. Challenges and Opportunities
23. Future Research Directions

最近チェックした商品