Land and Water Resources Management Using Machine Learning and Geospatial Techniques (Developments in Environmental Science)

個数:
  • 予約

Land and Water Resources Management Using Machine Learning and Geospatial Techniques (Developments in Environmental Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9780443363061

Full Description

Land and Water Resources Management Using Machine Learning and Geospatial Techniques addresses critical knowledge gaps in hydrology, remote sensing, and soil and water conservation. This book will explore various methodologies for estimating soil loss, encompassing modeling techniques, geospatial methodologies, and machine learning approaches. This book will empower researchers in their pursuit of sustainable solutions for effective land and water management. Furthermore, it will explore the fusion of geospatial tools with ML-based models, fostering an innovative approach to resource management.

Contents

Section A: Applications of Geospatial Techniques for Soil Erosion Assessment
1. Introduction to basic watershed hydrology governing soil erosion.
2. Introduction to land and water management using geospatial techniques.
3. Geospatial techniques for soil erosion assessment and sediment transport.
4. Geospatial techniques for land degradation and reservoir sedimentation assessment.
5. Introduction to different technologies/remedial measures for controlling soil erosion/loss.

Section B: Modelling Approaches for Soil Loss Estimation
6. Application of SWAT model for soil loss prediction and risk assessment.
7. Application of the WEPP model for soil loss prediction and risk assessment.
8. Application of USLE, RUSLE and MUSLE for soil loss prediction and risk assessment.
9. Application of AI in soil and water conservation planning and management.
10. Application of any other soil erosion/loss prediction and risk assessment model.

Section C: Machine Learning Approaches for Soil Loss Prediction
11. AI-based models for erosion estimation and soil loss prediction.
12. AI-based models for simulating rainfall-runoff process.
13. AI-based models for stream-flow forecasting.
14. Machine learning models for sediment-load prediction and reservoir operations.

Section D: Hybrid Applications
15. Integrated use of geospatial techniques with machine learning models for spatial erosion prediction.
16. Integration of GIS with physically based models for soil loss prediction and watershed prioritization.
17. Integration of numerical and empirical models with geospatial techniques for erosion and sediment yield prediction.
18. Integrated applications of geospatial techniques and machine learning models for reservoir sedimentation.
19. Integration of SWAT model with GIS for soil loss/sediment yield prediction.
20. Advanced techniques of soil erosion management/control.

最近チェックした商品