Deep Learning in Drug Design : Methods and Applications

個数:
電子版価格
¥27,086
  • 電子版あり

Deep Learning in Drug Design : Methods and Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 498 p.
  • 言語 ENG
  • 商品コード 9780443329081
  • DDC分類 615.1028563

Full Description

Deep Learning in Drug Design: Methods and Applications summarizes the most recent methods, and technological advances of deep learning for drug design, which mainly consists of molecular representations, the architectures of deep learning, geometric deep learning, large models, etc., as well as deep learning applications in various aspects of drug design. This book offers a comprehensive academic overview of deep learning in drug design. It begins with molecular representations, CNNs, GNNs, Transformers, generative models, explainable AI, large models, etc. Next, it covers deep learning applications like protein structure prediction, molecular interactions, ADMET prediction, antibody design, and so on. Finally, a separate chapter is dedicated to the introduction of the ethics and regulation of artificial intelligence in drug design. This book is ideal for readers aiming to learn and implement deep learning methods and applications in drug design and related fields.
Deep Learning in Drug Design: Methods and Applications is particularly helpful to undergraduate, graduate, and doctoral students in need of a practical guide to the principles of the discipline. Established researchers in the area will benefit from the detailed case studies and algorithms presented.

Contents

PART 1: Deep learning theories and methods for drug design

1. CHAPTER 1 Molecular representations in deep learning

2. CHAPTER 2 CNNs in drug design

3. CHAPTER 3 GNNs in drug design

4. CHAPTER 4 RNNs and LSTM in drug design

5. CHAPTER 5 Deep reinforcement learning in drug design

6. CHAPTER 6 Transformer and drug design

7. CHAPTER 7 Generative models for drug design

8. CHAPTER 8 Geometric graph learning for drug design

9. CHAPTER 9 Self-supervised learning for drug discovery

10. CHAPTER 10 Transfer learning and meta-learning for drug discovery

11. CHAPTER 11 Explainable artificial intelligence for drug design models

12. CHAPTER 12 Large models in drug design

PART 2: Deep learning applications in drug design

13. CHAPTER 13 Deep learning for protein secondary structure prediction

14. CHAPTER 14 Deep learning in protein structure prediction

15. CHAPTER 15 Deep learning for affinity prediction and interface prediction in molecular interactions

16. CHAPTER 16 Deep learning for complex structure prediction in molecular interactions

17. CHAPTER 17 Deep learning in chemical synthesis and retrosynthesis

18. CHAPTER 18 Deep learning for ADME prediction

19. CHAPTER 19 Deep learning for toxicity prediction

20. CHAPTER 20 Deep learning for TCR-pMHC binding prediction

21. CHAPTER 21 Deep learning for B-cell epitope prediction and receptor-antigen binding

prediction

22. CHAPTER 22 Deep learning for antigen-specific antibody design

23. CHAPTER 23 Ethical and regulatory of artificial intelligence in drug design

最近チェックした商品