Deep Learning in Drug Design : Methods and Applications

個数:
  • 予約

Deep Learning in Drug Design : Methods and Applications

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 500 p.
  • 言語 ENG
  • 商品コード 9780443329081

Full Description

Deep Learning in Drug Design: Methods and Applications summarizes the most recent methods, applications, and technological advances of deep learning for drug design, which mainly consists of molecular representations, the architectures of deep learning, geometric deep learning, large models for drugs, and the deep learning applications in various aspects of drug design. This book will give readers an intuitive and simple understanding of the encoding and decoding of drugs for model training, while deep learning methods profile the different training perspectives for drug design including sequence-based, 2D, and 3D drug design based on geometric deep learning. This book is suitable for readers who are seeking to learn and use deep learning methods and applications for drug discovery and other related fields. Deep Learning in Drug Design: Methods and Applications is particularly helpful to graduate students in need of a practical guide to the principles of the discipline. Established researchers in the area will benefit from the detailed case studies and algorithms presented.

Contents

Part 1: Deep Learning Theories and Methods for Drug Design
1. Molecular Representations in Deep Learning
2. CNNs in Drug Design
3. GNNs in Drug Design
4. RNNs and LSTM in Drug Design
5. Deep Reinforcement Learning in Drug Design
6. Transformer and Drug Design
7. Generative Models for Drug Design
8. Geometric Graph Learning for Drug Design
9. Contrastive Learning and Pre-training Models for Drug Discovery
10. Transfer Learning, Knowledge Distillation, and Meta-Learning for Drug Discovery
11. Explainable Artificial Intelligence for Drug Design Models
12. Large Language Models for Drug Design

Part 2: Deep Learning Applications in Drug Design
13. Deep Learning for Protein Secondary Structure Prediction
14. Deep Learning in Protein Structure Prediction
15. Deep Learning in Molecular Interactions
16. Deep Learning in Chemical Synthesis and Retrosynthesis
17. Deep Learning for ADMET Prediction
18. Deep Learning for Toxicity Prediction
19. Deep Learning for TCR-pMHC Binding
20. Deep Learning for B Cell Epitope Prediction and Receptor
21. Deep Learning for Antigen-specific Antibody Design

最近チェックした商品