- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Distributed Optimal Control of Large-Scale Wind Farm Clusters: Optimal Active and Reactive Power Control, and Fault Ride Through, a new volume in the Elsevier Wind Energy Engineering series, explores the latest advances in distributed optimal control of large-scale wind farm clusters, also describing distributed optimal control techniques for high voltage ride through (HVRT). Both mathematical formulations and algorithm details are provided, along with MATLAB codes to replicate and implement distributed optimal control schemes. This is a valuable resource for anyone interested in the operation, control, and integration of wind power plants, wind farms, and electricity grids, both at research and operational levels.
Researchers, faculty, scientists, engineers, R&D, and other industry professionals, as well as graduate and postgraduate students studying and working in wind energy will find this comprehensive resource a valuable addition to their work.
Contents
Section I - Introduction
1. Introduction to Large-Scale Wind Power Integration
Section II - Optimal Active Power Control of Large-Scale Wind Farm Clusters
2. Bi-Level Decentralized Active Power Control for Large-Scale Wind Farm Clusters
3. Optimal Active Power Control Based on MPC for DFIG-based Wind Farm Equipped with Distributed Energy Storage Systems
4. Hierarchical Active Power Control of DFIG-based Wind Farm with Distributed Energy Storage Systems based on Alternating Direction Method of Multipliers (ADMM)
5 Hierarchical Optimal Control for Synthetic Inertial Response of Wind Farm Based on Alternating Direction Method of Multipliers (ADMM)
Section III - Optimal Active and Reactive Power Control of Large-Scale Wind Farm Clusters
6. Bi-Level Decentralized Active and Reactive Power Control for Large-Scale Wind Farm Cluster
7. Two-Tier Combined Active and Reactive Power Control for VSC-HVDC Connected Large-Scale Wind Farm Cluster based on Alternating Direction Method of Multipliers (ADMM)
8. Distributed Optimal Active and Reactive Power Control for Wind Farms Based on ADMM
9. ADMM-based Distributed Active and Reactive Power Control for Regional AC Grids with Wind Farms
Section IV - Optimal Voltage Control of Large-Scale Wind Farm Clusters
10. Distributed Voltage Control based on ADMM for Large Scale Wind Farm Cluster connected to VSC HVDC
11. Distributed Optimal Voltage Control for VSC-HVDC Connected Large-Scale Wind Farm Cluster Based on Analytical Target Cascading Method
12. Adaptive Droop-based Hierarchical Optimal Voltage Control Scheme for VSC-HVDC Connected Offshore Wind Farm
13. Distributed Optimal Voltage Control Strategy for AC Grid with DC Connection and Offshore Wind Farms Based on Alternating Direction Method of Multipliers (ADMM)
Section V - Fault Ride Through of Wind Farm Clusters
14. Coordinated Droop Control and Adaptive Model Predictive Control for Enhancing HVRT and Post-Event Recovery of Large-Scale Wind Farms
15. Hierarchical Event-Triggered MPC-Based Coordinated Control for HVRT and Voltage Restoration of Large-Scale Wind Farms
16. Coordinated Voltage Support Control for Enhancing LVRT Capability of Large-Scale Wind Farms