Machine Learning Tools for Chemical Engineering : Methodologies and Applications

個数:

Machine Learning Tools for Chemical Engineering : Methodologies and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 622 p.
  • 言語 ENG
  • 商品コード 9780443290589
  • DDC分類 006.31

Full Description

Machine Learning Tools for Chemical Engineering: Methodologies and Applications examines how machine learning (ML) techniques are applied in the field, offering precise, fast, and flexible solutions to address specific challenges.
ML techniques and methodologies offer significant advantages (such as accuracy, speed of execution, and flexibility) over traditional modeling and optimization techniques. This book integrates ML techniques to solve problems inherent to chemical engineering, providing practical tools and a theoretical framework combining knowledge modeling, representation, and management, tailored to the chemical engineering field. It provides a precedent for applied Al, but one that goes beyond purely data-centric ML. It is firmly grounded in the philosophies of knowledge modeling, knowledge representation, search and inference, and knowledge extraction and management.
Aimed at graduate students, researchers, educators, and industry professionals, this book is an essential resource for those seeking to implement ML in chemical processes, aiming to foster optimization and innovation in the sector.

Contents

Section I: Introduction to Machine Learning for Chemical Engineering
1. Introduction to Machine Learning
2. Data Science in Chemical Engineering
3. Fundamentals of Machine Learning Algorithms

Section II: Tools and Software
4. Machine Learning with Python
5. Machine Learning with R

Section lll: Supervised Learning, Unsupervised Learning and Optimization
6. Linear and polynomial regression
7. Support Vector Machines
8. Decision Trees and Random Forests
9. Deep Learning
10. Clustering and Dimensionality Reduction
11. Machine Learning Model Optimization
12. Machine Learning in Chemical Processes
13. Machine learning in Supply Chain Management
14. Machine Learning in Energy Integration
15. Machine Learning in Time Series Forecasting
16. Machine Learning in Optimal Water Management in the Exploitation of Unconventional Fossil Fuels
17. Challenges and Future Scope

最近チェックした商品