Python for Quantum Chemistry : A Full Stack Programming Guide (Theoretical and Computational Chemistry)

個数:

Python for Quantum Chemistry : A Full Stack Programming Guide (Theoretical and Computational Chemistry)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 754 p.
  • 言語 ENG
  • 商品コード 9780443238376
  • DDC分類 541.28

Full Description

Quantum chemistry requires ever higher computational performance, with more and more sophisticated and dedicated Python scripts being required to solve challenging problems. Although resources for basic use of Python are widely (and often freely) available online and in literature, truly cohesive materials for advanced Python programming skills are lacking.

Qiming Sun, a developer of the popular Python package PySCF, provides a comprehensive, end-to-end practical resource for researchers and engineers who have basic Python programming experiences chiefly in computational chemistry but want to take their use of the software forwards to the next level, the book provides an insightful exploration of Numpy, Pandas, and other data analysis tools. Readers will learn how to manage their Python computational projects in a professional way, with various tools and protocols for computational chemistry research and general scientific computing tasks exhibited and analysed from a technical perspective. Multiple programming paradigms including object-oriented, functional, meta-programming, dynamic, concurrent, and vector-oriented are illustrated in various technology scenarios allowing readers to properly use them to enhance their program projects. Readers will also learn how to use the presented optimization technologies to speed up their Python applications, even to the level as fast as a native C++ implementation. The applications of these technologies are then demonstrated using quantum chemistry Python applications.

Python for Quantum Chemistry: A Full Stack Programming Guide is written primarily for graduate students, researchers and software engineers working primarily in the fields of theoretical chemistry, computational chemistry, condensed matter physics, material modelling, molecular simulations, and quantum computing.

Contents

Part I: Python tools for chemistry research
1. Research environment in Python
2. Data processing
3. Scientific computing tools
4. IO
5. How to communicate with other programs
6. Code generation
7. Workflow and job scheduler

Part II: High performance computing with Python
8. Combining Python with other programming languages
9. Code performance optimization
10. Tensor
11. Parallelism
12. Python with GPU

Part III: Quantum chemistry method development with Python
13. Integral evaluation
14. Numerical optimization methods
15. Mean-filed methods
16. Post-Hartree-Fock methods
17. Molecular properties
18. Symmetry

最近チェックした商品