Decision-Making Models : A Perspective of Fuzzy Logic and Machine Learning (Uncertainty, Computational Techniques, and Decision Intelligence)

個数:
電子版価格
¥24,295
  • 電子版あり

Decision-Making Models : A Perspective of Fuzzy Logic and Machine Learning (Uncertainty, Computational Techniques, and Decision Intelligence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 678 p.
  • 言語 ENG
  • 商品コード 9780443161476
  • DDC分類 006.31

Full Description

Decision Making Models: A Perspective of Fuzzy Logic and Machine Learning presents the latest developments in the field of uncertain mathematics and decision science. The book aims to deliver a systematic exposure to soft computing techniques in fuzzy mathematics as well as artificial intelligence in the context of real-life problems and is designed to address recent techniques to solving uncertain problems encountered specifically in decision sciences. Researchers, professors, software engineers, and graduate students working in the fields of applied mathematics, software engineering, and artificial intelligence will find this book useful to acquire a solid foundation in fuzzy logic and fuzzy systems.

Other areas of note include optimization problems and artificial intelligence practices, as well as how to analyze IoT solutions with applications and develop decision-making mechanisms realized under uncertainty.

Contents

Section 1: Decision Making: New Developments
1. Neural networks
2. Artificial intelligent algorithms, motivation and terminology
3. Decision processes
4. Learning theory

Section 2: Metaheuristic Algorithms
5. Nature-inspired algorithms
6. Physic-based algorithms
7. evolution-based algorithms
8. swarm-based algorithms
9. Multi-objective algorithms
10. Unconstrained / constrained nonlinear optimization
11. Evolutionary Computing

Section 3: Optimization Problems
12. Mathematical Programming
13. Discrete and Combinatorial Optimization
14. Optimization and Data Analysis
15. Applied optimization problems
16. Engineering problems

Section 4: Machine Learning
17. Deep Learning
18. (Artificial) Neural Networks
19. Reinforcement Learning Algorithms
20. Classification and clustering

Section 5: Soft Computation
21. Uncertainty theory
22. Fuzzy sets
23. Computation with words
24. Soft modelling
25. Uncertain optimization models
26. Chaos theory and chaotic systems

Section 6: Data Analysis
27. Data mining and knowledge discovery
28. Categories of techniques of data analysis
29. Numerical analysis
30. Risk analysis

Section 7: Fuzzy Decision System
31. Fuzzy Control
32. Approximate Reasoning
33. Effectiveness in Fuzzy Logics
34. Neuro-fuzzy Systems
35. Fuzzy rule-based systems

最近チェックした商品