データマイニング:実践的機械学習ツール・技術(第5版)<br>Data Mining : Practical Machine Learning Tools and Techniques (5TH)

個数:

データマイニング:実践的機械学習ツール・技術(第5版)
Data Mining : Practical Machine Learning Tools and Techniques (5TH)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 688 p.
  • 言語 ENG
  • 商品コード 9780443158889

Full Description

Data Mining: Practical Machine Learning Tools and Techniques, Fifth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated new edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including more recent deep learning content on topics such as generative AI (GANs, VAEs, diffusion models), large language models (transformers, BERT and GPT models), and adversarial examples, as well as a comprehensive treatment of ethical and responsible artificial intelligence topics. Authors Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal, along with new author James R. Foulds, include today's techniques coupled with the methods at the leading edge of contemporary research

Contents

PART I: INTRODUCTION TO DATA MINING
1. What's it all about?
2. Input: concepts, instances, attributes
3. Output: knowledge representation
4. Algorithms: the basic methods
5. Credibility: evaluating what's been learned
6. Preparation: data preprocessing and exploratory data analysis
7. Ethics: what are the impacts of what's been learned?

PART II: MORE ADVANCED MACHINE LEARNING SCHEMES
8. Ensemble learning
9. Extending instance-based and linear models
10. Deep learning: fundamentals
11. Advanced deep learning methods
12. Beyond supervised and unsupervised learning
13. Probabilistic methods: fundamentals
14. Advanced probabilistic methods
15. Moving on: applications and their consequences

最近チェックした商品