代数曲面(テキスト)<br>Algebraic Surfaces (Universitext)

個数:

代数曲面(テキスト)
Algebraic Surfaces (Universitext)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 258 p./サイズ 15 illus.
  • 商品コード 9780387986685

基本説明

Original Rumanian edition published by Bucuresti, 1981. Presents fundamentals from the theory of algebraic surfaces, including areas such as rational singularities of surfaces and their relation with Grothendieck duality theory, numerical criteria for contractibility of curves on an algebraic surface and more.

Full Description

The aim of this book is to present certain fundamental facts in the theory of algebraic surfaces, defined over an algebraically closed field lk of arbitrary characteristic. The book is based on a series of talks given by the author in the Algebraic Geometry seminar at the Faculty of Mathematics, University of Bucharest. The main goal is the classification of nonsingular projective surfaces (also called simply surfaces). In the context of complex algebraic varieties, the classification was obtained by Enriques and Castelnuovo. Around 1960, Kodaira [Kodl, Kod2] revived and simplified the classification of complex algebraic surfaces and extended it to the case of compact analytic surfaces. The problem of classifying surfaces in arbitrary characteristic remained open. The first step in this direction was the purely algebraic proof (valid in arbitrary characteristic), due to Zariski [Zarl, Zar2], of Castelnuovo's criterion of rationality. Then Mumford [Mum3, Mum4] introduced several new ideas, and the classification of surfaces in positive characteristic be­ came possible. Finally, Bombieri and Mumford [BMl, BM2] completed the classification of surfaces in arbitrary characteristic. Their result was the following: The same types of surfaces that exist in the case when lk is the complex field arise in the general case, if one sets aside certain pathologies that arise only in characteristic 2 or 3.

Contents

1 Cohomological Intersection Theory and the Nakai-Moishezon Criterion of Ampleness.- 2 The Hodge Index Theorem and the Structure of the Intersection Matrix of a Fiber.- 3 Criteria of Contractability and Rational Singularities.- 4 Properties of Rational Singularities.- 5 Noether's Formula, the Picard Scheme, the Albanese Variety, and Plurigenera.- 6 Existence of Minimal Models.- 7 Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations.- 8 Canonical Dimension of an Elliptic or Quasielliptic Fibration.- 9 The Classification Theorem According to Canonical Dimension.- 10 Surfaces with Canonical Dimension Zero (char(k) ? 2, 3).- 11 Ruled Surfaces. The Noether-Tsen Criterion.- 12 Minimal Models of Ruled Surfaces.- 13 Characterization of Ruled and Rational Surfaces.- 14 Zariski Decomposition and Applications.- 15 Appendix: Further Reading.- References.

最近チェックした商品