固体レーザー:大学院テキスト<br>Solid-State Lasers : A Graduate Text (Advanced Texts in Physics)

個数:

固体レーザー:大学院テキスト
Solid-State Lasers : A Graduate Text (Advanced Texts in Physics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 製本 Hardcover:ハードカバー版/ページ数 420 p., 252 illus.
  • 商品コード 9780387955902

基本説明

固体レーザーテキストの「バイブル」の大学院生向けのテキスト版。数値問題・解法・ヒントを収録。
Contents: Energy Transfer between Radiation and Atomic Transitions; Properties of Solid-State Laser Materials; Laser Amplifier; Optical Pump Systems; Thermo-Optic Effects; Q-Switching; Mode Locking; Nonlinear Devices; and more.

Full Description


Koechner's well-known `bible' on solid-state laser engineering is now available in an accessible format at the graduate level. Numerous exercises with hints for solution, new text and updated material where needed make this text very accessible.

Table of Contents

Preface                                            v
Introduction Overview of the History, 1 (1)
Performance Characteristics, and Applications
of Solid-State Lasers
Major Milestones in the Development of 1 (6)
Solid-State Lasers
Typical Performance Parameters and 7 (5)
Applications
Energy Transfer Between Radiation and 12 (32)
Atomic Transitions
Optical Amplification 12 (3)
Interaction of Radiation with Matter 15 (6)
Blackbody Radiation 15 (1)
Boltzmann's Statistics 16 (1)
Einstein's Coefficients 17 (3)
Phase Coherence of Stimulated Emission 20 (1)
Absorption and Optical Gain 21 (9)
Atomic Lineshapes 21 (4)
Absorption by Stimulated Transitions 25 (3)
Population Inversion 28 (2)
Creation of a Population Inversion 30 (5)
The Three-Level System 31 (2)
The Four-Level System 33 (1)
The Metastable Level 34 (1)
Laser Rate Equations 35 (9)
Three-Level System 36 (3)
Four-Level System 39 (1)
Summary 40 (1)
References 41 (1)
Exercises 41 (3)
Properties of Solid-State Laser Materials 44 (34)
Overview 45 (9)
Host Materials 46 (2)
Active Ions 48 (6)
Ruby 54 (3)
Nd: YAG 57 (3)
Nd: Glass 60 (3)
Laser Properties 60 (3)
Nd: YLF 63 (2)
Nd: YVO4 65 (2)
Er: Glass 67 (1)
Yb: YAG 68 (2)
Alexandrite 70 (2)
Ti: Sapphire 72 (6)
Summary 74 (1)
References 75 (1)
Exercises 76 (2)
Laser Oscillator 78 (43)
Operation at Threshold 80 (4)
Gain Saturation 84 (2)
Circulating Power 86 (2)
Oscillator Performance Model 88 (14)
Conversion of Input to Output Energy 88 (7)
Laser Output 95 (7)
Relaxation Oscillations 102(4)
Examples of Laser Oscillators 106(15)
Lamp-Pumped cw Nd: YAG Laser 107(4)
Diode Side-Pumped Nd: YAG Laser 111(4)
End-Pumped Systems 115(3)
Summary 118(1)
References 119(1)
Exercises 119(2)
Laser Amplifier 121(28)
Pulse Amplification 122(5)
Nd: YAG Amplifiers 127(8)
Nd: Glass Amplifiers 135(6)
Depopulation Losses 141(3)
Amplified Spontaneous Emission 141(3)
Prelasing and Parasitic Modes 144(1)
Self-Focusing 144(5)
Summary 147(1)
References 147(1)
Exercises 148(1)
Optical Resonator 149(38)
Transverse Modes 149(20)
Intensity Distribution 150(4)
Characteristics of a Gaussian Beam 154(2)
Resonator Configurations 156(4)
Stability of Laser Resonators 160(1)
Higher Order Modes 161(1)
Diffraction Losses 162(2)
Active Resonator 164(2)
Mode-Selecting Techniques 166(3)
Longitudinal Modes 169(9)
The Fabry--Perot Interferometer 169(3)
Laser Resonator 172(3)
Longitudinal Mode Control 175(3)
Unstable Resonators 178(9)
Summary 183(1)
References 183(1)
Exercises 184(3)
Optical Pump Systems 187(58)
Pump Sources 187(26)
Flashlamps 187(9)
Continuous Arc Lamps 196(2)
Laser Diodes 198(15)
Pump Radiation Transfer Methods 213(32)
Side-Pumping with Lamps 214(6)
Side-Pumping with Diodes 220(10)
End-Pumped Lasers 230(8)
Face-Pumped Disks 238(3)
Summary 241(1)
References 242(1)
Exercises 243(2)
Thermo-Optic Effects 245(34)
Cylindrical Geometry 248(17)
Temperature Distribution 249(2)
Thermal Stresses 251(2)
Photoelastic Effects 253(2)
Thermal Lensing 255(3)
Stress Birefringence 258(5)
Compensation of Thermally Induced 263(2)
Optical Distortions
Slab and Disk Geometries 265(6)
Rectangular-Slab Laser 265(3)
Slab Laser with Zigzag Optical Path 268(2)
Disk Amplifiers 270(1)
End-Pumped Configurations 271(8)
Summary 276(1)
References 277(1)
Exercises 278(1)
Q-Switching 279(29)
Q-Switch Theory 280(8)
Continuously Pumped, Repetitively 284(4)
Q-Switched Systems
Mechanical Devices 288(1)
Electro-Optical Q-Switches 289(6)
Acousto-Optic Q-Switches 295(7)
Device Characteristics 300(2)
Passive Q-Switch 302(6)
Summary 305(1)
References 306(1)
Exercises 306(2)
Mode-Locking 308(31)
Pulse Formation 308(7)
Passive Mode-Locking 315(7)
Liquid Dye Saturable Absorber 316(1)
Kerr Lens Mode-Locking 317(5)
Active Mode-Locking 322(4)
AM Modulation 322(3)
FM Modulation 325(1)
Picosecond Lasers 326(5)
AM Mode-Locking 327(2)
FM Mode-Locking 329(2)
Femtosecond Lasers 331(8)
Laser Materials 331(1)
Resonator Design 332(4)
Summary 336(1)
References 337(1)
Exercises 337(2)
Nonlinear Devices 339(48)
Nonlinear Optics 340(5)
Second-Order Nonlinearities 341(2)
Third-Order Nonlinearities 343(2)
Harmonic Generation 345(18)
Basic Equations of Second-Harmonic 345(3)
Generation
Index Matching 348(6)
Parameters Affecting the Doubling 354(4)
Efficiency
Intracavity Frequency Doubling 358(2)
Third-Harmonic Generation 360(3)
Parametric Oscillators 363(11)
Performance Modeling 365(7)
Quasi-Phase-Matching 372(2)
Raman Laser 374(5)
Optical Phase Conjugation 379(8)
Summary 384(1)
References 385(1)
Exercises 386(1)
A Conversion Factors and Constants 387(4)
B Definition of Symbols 391(6)
C Partial Solutions to the Exercises 397(8)
Index 405