科学計算におけるモンテカルロ戦略<br>Monte Carlo Strategies in Scientific Computing (Springer Series in Statistics)

個数:

科学計算におけるモンテカルロ戦略
Monte Carlo Strategies in Scientific Computing (Springer Series in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 360 p.
  • 商品コード 9780387763699
  • DDC分類 519

基本説明

New in paperback. Hardcover was published in 2001. Provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared.

Full Description

This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

Contents

1 Introduction and Examples.- 2 Basic Principles: Rejection, Weighting, and Others.- 3 Theory of Sequential Monte Carlo.- 4 Sequential Monte Carlo in Action.- 5 Metropolis Algorithm and Beyond.- 6 The Gibbs Sampler.- 7 Cluster Algorithms for the Ising Model.- 8 General Conditional Sampling.- 9 Molecular Dynamics and Hybrid Monte Carlo.- 10 Multilevel Sampling and Optimization Methods.- 11 Population-Based Monte Carlo Methods.- 12 Markov Chains and Their Convergence.- 13 Selected Theoretical Topics.- A Basics in Probability and Statistics.- A.1 Basic Probability Theory.- A.1.1 Experiments, events, and probability.- A.1.2 Univariate random variables and their properties.- A.1.3 Multivariate random variable.- A.1.4 Convergence of random variables.- A.2 Statistical Modeling and Inference.- A.2.1 Parametric statistical modeling.- A.2.2 Frequentist approach to statistical inference.- A.2.3 Bayesian methodology.- A.3 Bayes Procedure and Missing Data Formalism.- A.3.1 The joint and posterior distributions.- A.3.2 The missing data problem.- A.4 The Expectation-Maximization Algorithm.- References.- Author Index.

最近チェックした商品