Asymptotic Theory of Statistics and Probability (Springer Texts in Statistics)

個数:

Asymptotic Theory of Statistics and Probability (Springer Texts in Statistics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 695 p.
  • 商品コード 9780387759708

基本説明

An encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools.

Full Description

This book developed out of my year-long course on asymptotic theory at Purdue University. To some extent, the topics coincide with what I cover in that course. There are already a number of well-known books on asy- totics. This book is quite different. It covers more topics in one source than areavailableinanyothersinglebookonasymptotictheory. Numeroustopics covered in this book are available in the literature in a scattered manner, and they are brought together under one umbrella in this book. Asymptotic theory is a central unifying theme in probability and statistics. My main goal in writing this book is to give its readers a feel for the incredible scope and reach of asymptotics. I have tried to write this book in a way that is accessible and to make the reader appreciate the beauty of theory and the insights that only theory can provide. Essentially every theorem in the book comes with at least one reference, preceding or following the statement of the theorem. In addition, I have p- vided a separate theorem-by-theorem reference as an entry on its own in the front of the book to make it extremely convenient for the reader to ?nd a proof that was not provided in the text. Also particularly worth mentioning is a collection of nearly 300 practically useful inequalities that I have c- lected together from numerous sources. This is appended at the very end of the book.

Contents

Basic Convergence Concepts and Theorems.- Metrics, Information Theory, Convergence, and Poisson Approximations.- More General Weak and Strong Laws and the Delta Theorem.- Transformations.- More General Central Limit Theorems.- Moment Convergence and Uniform Integrability.- Sample Percentiles and Order Statistics.- Sample Extremes.- Central Limit Theorems for Dependent Sequences.- Central Limit Theorem for Markov Chains.- Accuracy of Central Limit Theorems.- Invariance Principles.- Edgeworth Expansions and Cumulants.- Saddlepoint Approximations.- U-statistics.- Maximum Likelihood Estimates.- M Estimates.- The Trimmed Mean.- Multivariate Location Parameter and Multivariate Medians.- Bayes Procedures and Posterior Distributions.- Testing Problems.- Asymptotic Efficiency in Testing.- Some General Large-Deviation Results.- Classical Nonparametrics.- Two-Sample Problems.- Goodness of Fit.- Chi-square Tests for Goodness of Fit.- Goodness of Fit with Estimated Parameters.- The Bootstrap.- Jackknife.- Permutation Tests.- Density Estimation.- Mixture Models and Nonparametric Deconvolution.- High-Dimensional Inference and False Discovery.- A Collection of Inequalities in Probability, Linear Algebra, and Analysis.

最近チェックした商品