- ホーム
- > 洋書
- > ドイツ書
- > Mathematics, Sciences & Technology
- > Mathematics
- > probability calculus, stochastics, mathematical statistics
基本説明
Provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks.
Full Description
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence. This book provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended primarily for practitioners, this book does not require sophisticated mathematical skills. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his/her level of understanding.
Contents
Introduction.- Networks.- Probabilities.- Probabilistic Networks.- Solving Probabilistic Networks.- Eliciting the Model.- Modeling Techniques.- Data-Driven Modeling.- Conflict Analysis.- Sensitivity Analysis.- Value of Information Analysis.



