ファンデルヴェルデン著/代数学I<br>Algebra Vol.1

個数:

ファンデルヴェルデン著/代数学I
Algebra Vol.1

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 265 p.
  • 商品コード 9780387406244

基本説明

This widely known textbook, formally titled "Modern Algebra," by the noted Dutch mathematician van der Waerden is now back in print. Contents: 1. Numbers and Sets; 2. Groups; 3. Rings and Fields; 4. Vector Spaces and Tensor Spaces; and more. Originally published by Frederick Ungar Publishing, New York 1970.
...This beautiful and eloquent text served to transform the graduate teaching of algebra, not only in Germany, but elsewhere in Europe and the United States. It formulated clearly and succinctly the conceptual and structural insights which Noether had expressed so forcefully. This was combined with the elegance and understanding with which Artin had lectured...Its simple but austere style set the pattern for mathematical texts in other subjects, from Banach spaces to topological group theory...It is, in my view, the most influential text in algebra of the twentieth century.- Saunders MacLane, Notices of the AMS

Full Description

...This beautiful and eloquent text served to transform the graduate teaching of algebra, not only in Germany, but elsewhere in Europe and the United States. It formulated clearly and succinctly the conceptual and structural insights which Noether had expressed so forcefully. This was combined with the elegance and understanding with which Artin had lectured...Its simple but austere style set the pattern for mathematical texts in other subjects, from Banach spaces to topological group theory...It is, in my view, the most influential text in algebra of the twentieth century.

- Saunders MacLane, Notices of the AMS

How exciting it must have been to hear Emil Artin and Emmy Noether lecture on algebra in the 1920's, when the axiomatic approach to the subject was amazing and new! Van der Waerden was there, and produced from his notes the classic textbook of the field. To Artin's clarity and Noether's originality he added his extraordinary gift for synthesis. At one time every would-be algebraist had to study this text. Even today, all who work in Algebra owe a tremendous debt to it; they learned from it by second or third hand, if not directly. It is still a first-rate (some would say, the best) source for the great range of material it contains.

- David Eisenbud, Mathematical Sciences Research Institute

Van der Waerden's book Moderne Algebra, first published in 1930, set the standard for the unified approach to algebraic structures in the twentieth century. It is a classic, still worth reading today.

- Robin Hartshorne, University of California, Berkeley

Contents

1 Numbers and Sets.- 1.1 Sets.- 1.2 Mappings. Cardinality.- 1.3 The Number Sequence.- 1.4 Finite and Countable (Denumerable) Sets.- 1.5 Partitions.- 2 Groups.- 2.1 The Concept of a Group.- 2.2 Subgroups.- 2.3 Complexes. Cosets.- 2.4 Isomorphisms and Automorphisms.- 2.5 Homomorphisms, Normal Subgroups, and Factor Groups.- 3 Rings and Fields.- 3.1 Rings.- 3.2 Homomorphism and Isomorphism.- 3.3 The Concept of a Field of Quotients.- 3.4 Polynomial Rings.- 3.5 Ideals. Residue Class Rings.- 3.6 Divisibility. Prime Ideals.- 3.7 Euclidean Rings and Principal Ideal Rings.- 3.8 Factorization.- 4 Vector Spaces and Tensor Spaces.- 4.1 Vector Spaces.- 4.2 Dimensional Invariance.- 4.3 The Dual Vector Space.- 4.4 Linear Equations in a Skew Field.- 4.5 Linear Transformations.- 4.6 Tensors.- 4.7 Antisymmetric Multilinear Forms and Determinants.- 4.8 Tensor Products, Contraction, and Trace.- 5 Polynomials.- 5.1 Differentiation.- 5.2 The Zeros of a Polynomial.- 5.3 Interpolation Formulae.- 5.4 Factorization.- 5.5 Irreducibility Criteria.- 5.6 Factorization in a Finite Number of Steps.- 5.7 Symmetric Functions.- 5.8 The Resultant of Two Polynomials.- 5.9 The Resultant as a Symmetric Function of the Roots.- 5.10 Partial Fraction Decomposition.- 6 Theory of Fields.- 6.1 Subfields. Prime Fields.- 6.2 Adjunction.- 6.3 Simple Field Extensions.- 6.4 Finite Field Extensions.- 6.5 Algebraic Field Extensions.- 6.6 Roots of Unity.- 6.7 Galois Fields (Finite Commutative Fields).- 6.8 Separable and Inseparable Extensions.- 6.9 Perfect and Imperfect Fields.- 6.10 Simplicity of Algebraic Extensions. Theorem on the Primitive Element.- 6.11 Norms and Traces.- 7 Continuation of Group Theory.- 7.1 Groups with Operators.- 7.2 Operator Isomorphisms and Operator Homomorphisms.- 7.1 The Two Laws of Isomorphism.- 7.4 Normal Series and Composition Series.- 7.5 Groups of Order pn.- 7.6 Direct Products.- 7.7 Group Characters.- 7.8 Simplicity of the Alternating Group.- 7.9 Transitivity and Primitivity.- 8 The Galois Theory.- 8.1 The Galois Group.- 8.2 The Fundamental Theorem of the Galois Theory.- 8.3 Conjugate Groups, Conjugate Fields, and Elements.- 8.4 Cyclotomic Fields.- 8.5 Cyclic Fields and Pure Equations.- 8.6 Solution of Equations by Radicals.- 8.7 The General Equation of Degree n.- 8.8 Equations of the Second, Third, and Fourth Degrees.- 8.9 Constructions with Ruler and Compass.- 8.10 Calculation of the Galois Group. Equations with a Symmetric Group.- 8.11 Normal Bases.- 9 Ordering and Well Ordering of Sets.- 9.1 Ordered Sets.- 9.2 The Axiom of Choice and Zorn's Lemma.- 9.3 The Well-Ordering Theorem.- 9.4 Transfinite Induction.- 10 Infinite Field Extensions.- 10.1 Algebraically Closed Fields.- 10.2 Simple Transcendental Extensions.- 10.3 Algebraic Dependence and Independence.- 10.4 The Degree of Transcendency.- 10.5 Differentiation of Algebraic Functions.- 11 Real Fields.- 11.1 Ordered Fields.- 11.2 Definition of the Real Numbers.- 11.3 Zeros of Real Functions.- 11.4 The Field of Complex Numbers.- 11.5 Algebraic Theory of Real Fields.- 11.6 Existence Theorems for Formally Real Fields.- 11.7 Sums of Squares.

最近チェックした商品