学級における数学知識の構築<br>The Construction of New Mathematical Knowledge in Classroom Interaction : An Epistemological Perspective (Mathematics Education Library Vol.38) (2006. XIV, 236 p. w. ill.)

個数:

学級における数学知識の構築
The Construction of New Mathematical Knowledge in Classroom Interaction : An Epistemological Perspective (Mathematics Education Library Vol.38) (2006. XIV, 236 p. w. ill.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 236 p./サイズ 100 illus.
  • 言語 ENG
  • 商品コード 9780387242514

基本説明

New in paperback. Hardcover was published in 2006. Topics: How is new mathematical knowledge interactively constructed in a typical instructional communication among students together with the teacher?

Full Description

Mathematics is generally considered as the only science where knowledge is uni­ form, universal, and free from contradictions. „Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher­ ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra­ dictions were found that would question the uniformity of mathematics" (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro­ fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab­ lishing a communicable „code of conduct" which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co­ ordinated and unequivocal way.

Contents

General Overview Of The Book.- Overview of the First Chapter.- Theoretical Background and Starting Point.- Overview of the Second Chapter.- The Theoretical Research Question.- Overview of the Third Chapter.- Overview of the Fourth Chapter.- Epistemology-Oriented Analyses of Mathematical Interactions.- Epistemological and Communicational Conditions of Interactive Mathematical Knowledge Constructions.

最近チェックした商品