Big Data in Radiation Oncology (Imaging in Medical Diagnosis and Therapy)

個数:

Big Data in Radiation Oncology (Imaging in Medical Diagnosis and Therapy)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9780367780159
  • DDC分類 616.9940757

Full Description

Big Data in Radiation Oncology gives readers an in-depth look into how big data is having an impact on the clinical care of cancer patients. While basic principles and key analytical and processing techniques are introduced in the early chapters, the rest of the book turns to clinical applications, in particular for cancer registries, informatics, radiomics, radiogenomics, patient safety and quality of care, patient-reported outcomes, comparative effectiveness, treatment planning, and clinical decision-making. More features of the book are:


Offers the first focused treatment of the role of big data in the clinic and its impact on radiation therapy.




Covers applications in cancer registry, radiomics, patient safety, quality of care, treatment planning, decision making, and other key areas.




Discusses the fundamental principles and techniques for processing and analysis of big data.




Address the use of big data in cancer prevention, detection, prognosis, and management.




Provides practical guidance on implementation for clinicians and other stakeholders.



Dr. Jun Deng is a professor at the Department of Therapeutic Radiology of Yale University School of Medicine and an ABR board certified medical physicist at Yale-New Haven Hospital. He has received numerous honors and awards such as Fellow of Institute of Physics in 2004, AAPM Medical Physics Travel Grant in 2008, ASTRO IGRT Symposium Travel Grant in 2009, AAPM-IPEM Medical Physics Travel Grant in 2011, and Fellow of AAPM in 2013.

Lei Xing, Ph.D., is the Jacob Haimson Professor of Medical Physics and Director of Medical Physics Division of Radiation Oncology Department at Stanford University. His research has been focused on inverse treatment planning, tomographic image reconstruction, CT, optical and PET imaging instrumentations, image guided interventions, nanomedicine, and applications of molecular imaging in radiation oncology. Dr. Xing is on the editorial boards of a number of journals in radiation physics and medical imaging, and is recipient of numerous awards, including the American Cancer Society Research Scholar Award, The Whitaker Foundation Grant Award, and a Max Planck Institute Fellowship.

Contents

Series Preface

Preface

Acknowledgments

Editors

Contributors

1. Big data in radiation oncology: Opportunities and challenges

Jean-Emmanuel Bibault

2. Data standardization and informatics in radiation oncology

Charles S. Mayo

3. Storage and databases for big data

Tomas Skripcak, Uwe Just, Ida Schönfeld, Esther G.C. Troost, and Mechthild Krause

4. Machine learning for radiation oncology

Yi Luo and Issam El Naqa

5. Cloud computing for big data

Sepideh Almasi and Guillem Pratx

6. Big data statistical methods for radiation oncology

Yu Jiang, Vojtech Huser, and Shuangge Ma

7. From model-driven to knowledge- and data-based treatment planning

Morteza Mardani, Yong Yang, Yinyi Ye, Stephen Boyd, and Lei Xing

8. Using big data to improve safety and quality in radiation oncology

Eric Ford, Alan Kalet, and Mark Phillips

9. Tracking organ doses for patient safety in radiation therapy

Wazir Muhammad, Ying Liang, Gregory R. Hart, Bradley J. Nartowt, David A. Roffman, and Jun Deng

10. Big data and comparative effectiveness research in radiation oncology

Sunil W. Dutta, Daniel M. Trifiletti, and Timothy N. Showalter

11. Cancer registry and big data exchange

Zhenwei Shi, Leonard Wee, and Andre Dekker

12. Clinical and cultural challenges of big data in radiation oncology

Brandon Dyer, Shyam Rao, Yi Rong, Chris Sherman, Mildred Cho, Cort Buchholz, and Stanley Benedict

13. Radiogenomics

Barry S. Rosenstein, Gaurav Pandey, Corey W. Speers, Jung Hun Oh, Catharine M.L. West, and Charles S. Mayo

14. Radiomics and quantitative imaging

Dennis Mackin and Laurence E. Court

15. Radiotherapy outcomes modeling in the big data era

Joseph O. Deasy, Aditya P. Apte, Maria Thor, Jeho Jeong, Aditi Iyer, Jung Hun Oh, and Andrew Jackson

16. Multi-parameterized models for early cancer detection and prevention

Gregory R. Hart, David A. Roffman, Ying Liang, Bradley J. Nartowt, Wazir Muhammad, and Jun Deng

Index

最近チェックした商品