機械学習応用のためのベイズ推論とガウス過程<br>Bayesian Reasoning and Gaussian Processes for Machine Learning Applications

個数:

機械学習応用のためのベイズ推論とガウス過程
Bayesian Reasoning and Gaussian Processes for Machine Learning Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 133 p.
  • 言語 ENG
  • 商品コード 9780367758479
  • DDC分類 006.3101519542

Full Description

This book introduces Bayesian reasoning and Gaussian processes into machine learning applications. Bayesian methods are applied in many areas, such as game development, decision making, and drug discovery. It is very effective for machine learning algorithms in handling missing data and extracting information from small datasets. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications uses a statistical background to understand continuous distributions and how learning can be viewed from a probabilistic framework. The chapters progress into such machine learning topics as belief network and Bayesian reinforcement learning, which is followed by Gaussian process introduction, classification, regression, covariance, and performance analysis of Gaussian processes with other models.

FEATURES




Contains recent advancements in machine learning



Highlights applications of machine learning algorithms



Offers both quantitative and qualitative research



Includes numerous case studies

This book is aimed at graduates, researchers, and professionals in the field of data science and machine learning.

Contents

1. Introduction to Naive Bayes and a Review on Its Subtypes with Applications 2. A Review on the Different Regression Analysis in Supervised Learning 3. Methods to Predict the Performance Analysis of Various Machine Learning Algorithms 4. A Viewpoint on Belief Networks and Their Applications 5. Reinforcement Learning Using Bayesian Algorithms with Applications 6. Alerting System for Gas Leakage in Pipelines 7. Two New Nonparametric Models for Biological Networks 8. Generating Various Types of Graphical Models via MARS 9. Financial Applications of Gaussian Processes and Bayesian Optimization 10. Bayesian Network Inference on Diabetes Risk Prediction Data

最近チェックした商品