線形回帰モデル:Rによる応用(テキスト)<br>Linear Regression Models : Applications in R (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

個数:

線形回帰モデル:Rによる応用(テキスト)
Linear Regression Models : Applications in R (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 420 p.
  • 言語 ENG
  • 商品コード 9780367753665
  • DDC分類 519.536

Full Description

Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment.

After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions.

Features




Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied.



Uses numerous graphs in R to illustrate the model's results, assumptions, and other features.



Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient.



Provides many examples using real-world datasets relevant to various academic disciplines.



Fully integrates the R software environment in its numerous examples.

The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena.

John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.

Contents

1. Introduction
2. Review of Elementary Statistical Concepts 
3. Simple Linear Regression Models 
4. Multiple Linear Regression Models 
5. The ANOVA Table and Goodness-of-Fit Statistics 
6. Comparing Linear Regression Models 
7. Indicator Variables in Linear Regression Models 
8. Independence 
9. Homoscedasticity 
10. Collinearity and Multicollinearity 
11. Normality, Linearity, and Interaction Effects 
12. Model Specification 
13. Measurement Errors 
14. Influential Observations: Leverage Points and Outliers 
15. Multilevel Linear Regression Models 
16. A Brief Introduction to Logistic Regression 
17. Conclusions 
Appendix A: Data Management 
Appendix B: Using Simulations to Examine Assumptions of Linear Regression Models 
Appendix C: Formulas 
Appendix C:  User-Written R Packages Employed in Examples

最近チェックした商品