Random Circulant Matrices

個数:
電子版価格
¥10,242
  • 電子版あり

Random Circulant Matrices

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 言語 ENG
  • 商品コード 9780367732912
  • DDC分類 512.9434

Full Description

Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random.

In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed.

Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee).

Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.

Contents

Circulants

Circulant



Symmetric circulant



Reverse circulant



k-circulant



Exercises




Symmetric and reverse circulant



Spectral distribution



Moment method



Scaling



Input and link



Trace formula and circuits



Words and vertices



(M) and Riesz's condition



(M) condition



Reverse circulant



Symmetric circulant



Related matrices



Reduced moment



A metric



Minimal condition



Exercises




LSD: normal approximation



Method of normal approximation



Circulant



k-circulant



Exercises




LSD: dependent input



Spectral density



Circulant



Reverse circulant



Symmetric circulant



k-circulant



Exercises




Spectral radius: light tail



Circulant and reverse circulant



Symmetric circulant



Exercises




Spectral radius: k-circulant



Tail of product



Additional properties of the k-circulant



Truncation and normal approximation



Spectral radius of the k-circulant



k-circulant for sn = kg +



Exercises




Maximum of scaled eigenvalues: dependent input



Dependent input with light tail



Reverse circulant and circulant



Symmetric circulant



k-circulant



k-circulant for n = k +



k-circulant for n = kg + , g >



Exercises




Poisson convergence



Point Process



Reverse circulant



Symmetric circulant



k-circulant, n = k +



Reverse circulant: dependent input



Symmetric circulant: dependent input



k-circulant, n = k + : dependent input



Exercises




Heavy tailed input: LSD



Stable distribution and input sequence



Background material



Reverse circulant and symmetric circulant



k-circulant: n = kg +



Proof of Theorem

Contents vii



k-circulant: n = kg -



Tail of the LSD



Exercises




Heavy-tailed input: spectral radius



Input sequence and scaling



Reverse circulant and circulant



Symmetric circulant



Heavy-tailed: dependent input



Exercises




Appendix



Proof of Theorem

Standard notions and results

最近チェックした商品