Deep Learning in Biomedical and Health Informatics : Current Applications and Possibilities (Emerging Trends in Biomedical Technologies and Health informatics)

個数:
電子版価格
¥10,499
  • 電子版あり

Deep Learning in Biomedical and Health Informatics : Current Applications and Possibilities (Emerging Trends in Biomedical Technologies and Health informatics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 202 p.
  • 言語 ENG
  • 商品コード 9780367726041
  • DDC分類 616.0754

Full Description

This book provides a proficient guide on the relationship between Artificial Intelligence (AI) and healthcare and how AI is changing all aspects of the healthcare industry. It also covers how deep learning will help in diagnosis and the prediction of disease spread. The editors present a comprehensive review of research applying deep learning in health informatics in the fields of medical imaging, electronic health records, genomics, and sensing, and highlights various challenges in applying deep learning in health care. This book also includes applications and case studies across all areas of AI in healthcare data. The editors also aim to provide new theories, techniques, developments, and applications of deep learning, and to solve emerging problems in healthcare and other domains. This book is intended for computer scientists, biomedical engineers, and healthcare professionals researching and developing deep learning techniques.

In short, the volume :




Discusses the relationship between AI and healthcare, and how AI is changing the health care industry.



Considers uses of deep learning in diagnosis and prediction of disease spread.



Presents a comprehensive review of research applying deep learning in health informatics across multiple fields.



Highlights challenges in applying deep learning in the field.



Promotes research in ddeep llearning application in understanding the biomedical process.

Dr.. M.A. Jabbar is a professor and Head of the Department AI&ML, Vardhaman College of Engineering, Hyderabad, Telangana, India.

Prof. (Dr.) Ajith Abraham is the Director of Machine Intelligence Research Labs (MIR Labs), Auburn, Washington, USA.

Dr.. Onur Dogan is an assistant professor at İzmir Bakırçay University, Turkey.

Prof. Dr. Ana Madureira is the Director of The Interdisciplinary Studies Research Center at Instituto Superior de Engenharia do Porto (ISEP), Portugal.

Dr.. Sanju Tiwari is a senior researcher at Universidad Autonoma de Tamaulipas, Mexico.

Contents

1. Foundations of Deep Learning and its Applications to Health Informatics.

2. Deep Knowledge Mining of Complete HIV Genome Sequences in Selected African Cohorts.

3. Review of Machine Learning Approach for Drug development Process.

4. A Detailed Comparison of Deep Neural Networks for Diagnosis of COVID-19.

5. Deep Learning in BioMedical Applications: Detection of Lung Disease with Convolutional Neural Networks

6. Deep Learning Methods For Diagnosis Of Covid-19 using Radiology Images And Genome Sequences: Challenges And Limitations.

7. Applications of Lifetime Modeling with Competing Risks in Biomedical Sciences.

8. PeNLP Parser: An Extraction and Visualization Tool for Precise Maternal, Neonatal and Child Healthcare Geo-locations from Unstructured Data.

9. Recent Trends in Deep learning, Challenges and Opportunities

最近チェックした商品