Machine Learning for Edge Computing : Frameworks, Patterns and Best Practices (Edge Ai in Future Computing)

個数:

Machine Learning for Edge Computing : Frameworks, Patterns and Best Practices (Edge Ai in Future Computing)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 言語 ENG
  • 商品コード 9780367694326
  • DDC分類 005.758

Full Description

This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it discusses how to build AI models, i.e., model training and inference, on edge. This book provides insights into this new inter-disciplinary field of edge computing from a broader vision and perspective. The authors discuss machine learning algorithms for edge computing as well as the future needs and potential of the technology. The authors also explain the core concepts, frameworks, patterns, and research roadmap, which offer the necessary background for potential future research programs in edge intelligence.

The target audience of this book includes academics, research scholars, industrial experts, scientists, and postgraduate students who are working in the field of Internet of Things (IoT) or edge computing and would like to add machine learning to enhance the capabilities of their work.

This book explores the following topics:




Edge computing, hardware for edge computing AI, and edge virtualization techniques



Edge intelligence and deep learning applications, training, and optimization



Machine learning algorithms used for edge computing



Reviews AI on IoT Discusses future edge computing needs

Amitoj Singh is an Associate Professor at the School of Sciences of Emerging Technologies, Jagat Guru Nanak Dev Punjab State Open University, Punjab, India.

Vinay Kukreja is a Professor at the Chitkara Institute of Engineering and Technology, Chitkara University, Punjab, India.

Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.

Contents

1. Fog Computing And Its Security Challenges. 2. Machine Learning for Edge Computing: Frameworks, Patterns and Best Practices. 3. Tea Vending Machine from extracts of Natural Tea leaves and other ingredients: IoT and Artificial Intelligence Enabled. 4. Recent Trends in OCR Systems: A Review. 5. A Novel Approach for Data Security using DNA Cryptography with Artificial Bee Colony Algorithm in Cloud Computing. 6. Various Techniques for Consensus Mechanism in Blockchain. 7. IoT inspired Smart Healthcare Service for diagnosing remote patients with Diabetes. 8. Segmentation of Deep Learning Models. 9. Alzheimer's disease Classification. 10. Deep learning applications on Edge computing. 11. Designing an Efficient Network based Intrusion Detection System using Artificial Bee Colony and ADASYN oversampling approach.

最近チェックした商品