Metric Structures and Fixed Point Theory

個数:
電子版価格
¥11,096
  • 電子版あり

Metric Structures and Fixed Point Theory

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9780367689148
  • DDC分類 515.7248

Full Description

It is an indisputable argument that the formulation of metrics (by Fréchet in the early 1900s) opened a new subject in mathematics called non-linear analysis after the appearance of Banach's fixed point theorem. Because the underlying space of this theorem is a metric space, the theory that developed following its publication is known as metric fixed point theory. It is well known that metric fixed point theory provides essential tools for solving problems arising in various branches of mathematics and other sciences such as split feasibility problems, variational inequality problems, non-linear optimization problems, equilibrium problems, selection and matching problems, and problems of proving the existence of solutions of integral and differential equations are closely related to fixed point theory. For this reason, many people over the past seventy years have tried to generalize the definition of metric space and corresponding fixed point theory. This trend still continues. A few questions lying at the heart of the theory remain open and there are many unanswered questions regarding the limits to which the theory may be extended.

Metric Structures and Fixed Point Theory provides an extensive understanding and the latest updates on the subject. The book not only shows diversified aspects of popular generalizations of metric spaces such as symmetric, b-metric, w-distance, G-metric, modular metric, probabilistic metric, fuzzy metric, graphical metric and corresponding fixed point theory but also motivates work on existing open problems on the subject. Each of the nine chapters—contributed by various authors—contains an Introduction section which summarizes the material needed to read the chapter independently of the others and contains the necessary background, several examples, and comprehensive literature to comprehend the concepts presented therein. This is helpful for those who want to pursue their research career in metric fixed point theory and its related areas.

Features




Explores the latest research and developments in fixed point theory on the most popular generalizations of metric spaces



Description of various generalizations of metric spaces



Very new topics on fixed point theory in graphical and modular metric spaces



Enriched with examples and open problems

This book serves as a reference for scientific investigators who need to analyze a simple and direct presentation of the fundamentals of the theory of metric fixed points. It may also be used as a text book for postgraduate and research students who are trying to derive future research scope in this area.

Contents

1 Symmetric Spaces and Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Pradip Ramesh Patle and Deepesh Kumar Patel

2 Fixed Point Theory in b-Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Nguyen Van Dung and Wutiphol Sintunavarat

3 Basics of w-Distances and Its Use in Various Types of Results . . . . . . . . . . . . . . . . . . . . . 67

Dhananjay Gopal and Mohammad Hasan

4 G-Metric Spaces: From the Perspective of F-Contractions and Best

Proximity Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Vishal Joshi and Shilpi Jain

5 Fixed Point Theory in Probabilistic Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Juan Martínez-Moreno

6 Fixed Point Theory For Fuzzy ContractiveMappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Dhananjay Gopal and Tatjana Došenovi'c

7 Set-Valued Maps and Inclusion Problems inModular Metric Spaces. . . . . . . . . . . . . 245

Poom Kumam

8 Graphical Metric Spaces and Fixed Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Satish Shukla

9 Fixed Point Theory in Partial Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Dhananjay Gopal and Shilpi Jain

最近チェックした商品