IoTデータ分析入門<br>An Introduction to IoT Analytics (Chapman & Hall/crc Data Science Series)

個数:

IoTデータ分析入門
An Introduction to IoT Analytics (Chapman & Hall/crc Data Science Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9780367686314
  • DDC分類 004.678

Full Description

This book covers techniques that can be used to analyze data from IoT sensors and addresses questions regarding the performance of an IoT system. It strikes a balance between practice and theory so one can learn how to apply these tools in practice with a good understanding of their inner workings. This is an introductory book for readers who have no familiarity with these techniques.

The techniques presented in An Introduction to IoT Analytics come from the areas of machine learning, statistics, and operations research. Machine learning techniques are described that can be used to analyze IoT data generated from sensors for clustering, classification, and regression. The statistical techniques described can be used to carry out regression and forecasting of IoT sensor data and dimensionality reduction of data sets. Operations research is concerned with the performance of an IoT system by constructing a model of the system under study and then carrying out a what-if analysis. The book also describes simulation techniques.

Key Features




IoT analytics is not just machine learning but also involves other tools, such as forecasting and simulation techniques.



Many diagrams and examples are given throughout the book to fully explain the material presented.



Each chapter concludes with a project designed to help readers better understand the techniques described.



The material in this book has been class tested over several semesters.



Practice exercises are included with solutions provided online at www.routledge.com/9780367686314

Harry G. Perros is a Professor of Computer Science at North Carolina State University, an Alumni Distinguished Graduate Professor, and an IEEE Fellow. He has published extensively in the area of performance modeling of computer and communication systems.

Contents

1. Introduction 2. Review of Probability Theory 3. Simulation Techniques 4. Hypothesis Testing 5. Multivariable Linear Regression 6. Time Series Forecasting 7. Dimensionality Reduction 8. Clustering Techniques 9. Classification Techniques 10. Artificial Neural Networks 11. Support Vector Machines 12. Hidden Markov Models

最近チェックした商品