計算最適化のための機械学習ハンドブック<br>Handbook of Machine Learning for Computational Optimization : Applications and Case Studies (Demystifying Technologies for Computational Excellence)

個数:
電子版価格
¥11,040
  • 電子版あり

計算最適化のための機械学習ハンドブック
Handbook of Machine Learning for Computational Optimization : Applications and Case Studies (Demystifying Technologies for Computational Excellence)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 280 p.
  • 言語 ENG
  • 商品コード 9780367685423
  • DDC分類 006.31

Full Description

Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques.

This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making.

Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.

Contents

Chapter 1 Random Variables in Machine Learning Chapter 2 Analysis of EMG Signals using Extreme Learning Machine with Nature Inspired Feature Selection Techniques Chapter 3 Detection of Breast Cancer by Using Various Machine Learning and Deep Learning Algorithms Chapter 4 Assessing the Radial Efficiency Performance of Bus Transport Sector Using Data Envelopment Analysis Chapter 5 Weight-Based Codes—A Binary Error Control Coding Scheme—A Machine Learning Approach Chapter 6 Massive Data Classification of Brain Tumors Using DNN: Opportunity in Medical Healthcare 4.0 through Sensors Chapter 7 Deep Learning Approach for Traffic Sign Recognition on Embedded Systems Chapter 8 Lung Cancer Risk Stratification Using ML and AI on Sensor- Based IoT: An Increasing Technological Trend for Health of Humanity Chapter 9 Statistical Feedback Evaluation System Chapter 10 Emission of Herbal Woods to Deal with Pollution and Diseases: Pandemic-Based Threats Chapter 11 Artificial Neural Networks: A Comprehensive Review Chapter 12 A Case Study on Machine Learning to Predict the Students' Result in Higher Education Chapter 13 Data Analytic Approach for Assessment Status of Awareness of Tuberculosis in Nigeria Chapter 14 Active Learning from an Imbalanced Dataset: A Study Conducted on the Depression, Anxiety, and Stress Dataset Chapter 15 Classification of the Magnetic Resonance Imaging of the Brain Tumor Using the Residual Neural Network Framework

最近チェックした商品