Recommender Systems : Algorithms and Applications

個数:

Recommender Systems : Algorithms and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 230 p.
  • 言語 ENG
  • 商品コード 9780367631871
  • DDC分類 005.56

Full Description

Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems.

The book examines several classes of recommendation algorithms, including




Machine learning algorithms



Community detection algorithms



Filtering algorithms

Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others.

Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include




A latent-factor technique for model-based filtering systems



Collaborative filtering approaches



Content-based approaches

Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.

Contents

Preface. Acknowledgements. Editors. List of Contributors. Chapter 1 Collaborative Filtering-based Robust Recommender System using Machine Learning Algorithms. Chapter 2 An Experimental Analysis of Community Detection Algorithms on a Temporally Evolving Dataset. Chapter 3 Why This Recommendation: Explainable Product Recommendations with Ontological Knowledge Reasoning. Chapter 4 Model-based Filtering Systems using a Latent-factor Technique. Chapter 5 Recommender Systems for the Social Networking Context for Collaborative Filtering and Content-Based Approaches. Chapter 6 Recommendation System for Risk Assessment in Requirements Engineering of Software with Tropos Goal-Risk Model. Chapter 7 A Comprehensive Overview to the Recommender System: Approaches, Algorithms and Challenges. Chapter 8 Collaborative Filtering Techniques: Algorithms and Advances. Index.

最近チェックした商品