信号処理の機械学習<br>Machine Learning in Signal Processing : Applications, Challenges, and the Road Ahead

個数:

信号処理の機械学習
Machine Learning in Signal Processing : Applications, Challenges, and the Road Ahead

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 374 p.
  • 言語 ENG
  • 商品コード 9780367618902
  • DDC分類 006.31

Full Description

Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML).

ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML.

The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML.

FEATURES




Focuses on addressing the missing connection between signal processing and ML



Provides a one-stop guide reference for readers



Oriented toward material and flow with regards to general introduction and technical aspects



Comprehensively elaborates on the material with examples and diagrams

This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.

Contents

1. Introduction to Signal Processing and Machine Learning

Kavitha Somaraj

2. Learning Theory (Supervised/Unsupervised) for Signal Processing

Ruby Jain, Bhuvan Jain, and Manimala Puri

3. Supervised and Unsupervised Learning Theory for Signal Processing

Sowmya K. B.

4. Applications of Signal Processing

Anuj Kumar Singh and Ankit Garg

5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and Signal Processing

V. Ajantha Devi and Mohd Naved

6. Brain-Computer Interfacing

Paras Nath Singh

7. Adaptive Filters and Neural Net

Sowmya K. B., Chandana G., and Anjana Mahaveer Daigond

8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network

Saikat Majumder

9. Intelligent Video Surveillance Systems Using Deep Learning Methods

Anjanadevi Bondalapati and Manjaiah D. H.

10. Stationary Signal, Autocorrelation, and Linear and Discriminant Analysis

Bandana Mahapatra and Kumar Sanjay Bhorekar

11. Intelligent System for Fault Detection in Rotating Electromechanical Machines.

Pascal Dore, Saad Chakkor, and Ahmed El Oualkadi

12. Wavelet Transformation and Machine Learning Techniques for Digital Signal Analysis in IoT Systems

Rajalakshmi Krishnamurthi and Dhanalekshmi Gopinathan

最近チェックした商品