Applications of Big Data and Machine Learning in Galaxy Formation and Evolution (Series in Astronomy and Astrophysics)

個数:

Applications of Big Data and Machine Learning in Galaxy Formation and Evolution (Series in Astronomy and Astrophysics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 402 p.
  • 言語 ENG
  • 商品コード 9780367611392
  • DDC分類 523.112

Full Description

As investigations into our Universe become more complex, in-depth, and widespread, galaxy surveys are requiring state-of-the-art data scientific methods to analyze them. This book provides a practical introduction to big data in galaxy formation and evolution, introducing the astrophysical basics, before delving into the latest techniques being introduced to astronomy and astrophysics from data science. This book helps translate the cutting-edge methods into accessible guidance for those without a formal background in computer science. It is an ideal manual for astronomers and astrophysicists, in addition to graduate students and postgraduate students in science and engineering looking to learn how to apply data-science to their research.

Key Features:

Introduces applications of data-science methods to the exciting subject of galaxy formation and evolution
Provides a practical guide to understanding cutting-edge data-scientific methods, as well as classical astrostatistical methods
Summarises a vast range of statistical and informatics methods in one volume, with concrete applications to astrophysics

Contents

Chapter 1: Introduction. Chapter 2: Properties of Galaxies. Chapter 3: Interstellar Medium (ISM). Chapter 4: Chemical Evolution of Galaxies. Chapter 5: Observational Star Formation Rate Indicator. Chapter 6: Clusters, Clustering of Galaxies, and the Large-Scale Structure. Chapter 7: Structure and Galaxy Formation in the Universe. Chapter 8: Basics of Statistics. Chapter 9: Expectation-Maximization (EM) Algorithm. Chapter 10: Copula and Luminosity and Mass Functions of Galaxies. Chapter 11: High-dimensional Statistical Analysis. Chapter 12: Basics of Machine Learning. Chapter 13: Galaxy Face. Chapter 14: New Quantification of Galaxy Evolution by Manifold Learning. Chapter 15: Topological Data Anlysis of the Large-Scale Structure. Chapter 16: Radio Morphology of Galaxies with Machine Learning. Appendix A: Cosmological Basics. Appendix B: Supplementary Information on Mathematics and Machine Learning. Appendix C: Physical Constants and Units. Bibliography. Index.

最近チェックした商品