Statistical Inference based on the Density Power Divergence : The Robustness Perspective

個数:
  • 予約

Statistical Inference based on the Density Power Divergence : The Robustness Perspective

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9780367541439

Full Description

All scientists, researchers and data analysts, who handle real data as part of their scientific explorations, have, from time to time, to face to the problem of having to deal with data which do not exactly conform to the model which was expected to describe these data. Often such non-conformity is manifested through outliers. Classical techniques, which are usually optimal for "pure" data, generally have poor resistance to "noisy" data consisting of outliers or exhibiting other forms of model misspecification. This manuscript discusses a particular method of inference which employs a robust minimum distance approach for noisy data.

• Provides all the up-to-date details about a very popular robust inference method based on the density power divergence within one cover

• Covers the general theory as well as applications to special types of data like survival data, count data, binary data, time series data, extreme value data and many more

• Discusses the extreme value problem from the robustness perspective

• Guides the readers for practical use of this popular robust inference method through several real life examples along with their implementation in the statistical software R.

• Contains many open problems in this popular research area of robust inferences which will help the readers to choose their new research problems and enrich the field by solving them

This book is aimed primarily at advanced graduate students, research scholars and scientist working on robust statistical methods. Researchers from several applied fields (like biology, economics, medical sciences, sociology, business & finance etc.) who need to analyse their experimental data with some potential noises and outliers will also find this book useful.

Contents

1. Introduction 2. The Density Power Divergence 3. Parametric Stochastic Regression Models 4. Inference for Independent Non-Homogeneous Data 5. The DPD in Time Series Analysis 6. Robust Model and Variable Selection 7. Inference in Mixture Models 8. Robust Survival Analysis 9. Inference for Stochastic Processes 10. DPD based Robust Pseudo-Bayes Estimation 11. The Logarithmic DPD and other Extensions

最近チェックした商品