ゲーム理論とその応用:入門(第2版)<br>Introducing Game Theory and its Applications (Advances in Applied Mathematics) (2ND)

個数:

ゲーム理論とその応用:入門(第2版)
Introducing Game Theory and its Applications (Advances in Applied Mathematics) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 275 p.
  • 言語 ENG
  • 商品コード 9780367507916
  • DDC分類 519.3

Full Description

This classic text, originally from the noted logician Elliot Mendelson, is intended to be an easy-to-read introduction to the basic ideas and techniques of game theory. It can be used as a class textbook or for self-study.

Introducing Game Theory and its Applications, Second Edition presents an easy-to-read introduction to the basic ideas and techniques of game theory. After a brief introduction, the authors begin with a chapter devoted to combinatorial games--a topic neglected or treated minimally in most other texts. The focus then shifts to two-person zero-sum games and their solutions.

Here the authors present the simplex method based on linear programming for solving these games and develop within this presentation the required background. The final chapter presents some of the fundamental ideas and tools of non-zero-sum games and games with more than two players, including an introduction to cooperative game theory.

The book is suitable for a first undergraduate course in game theory, or a graduate course for students with limited previous exposure. It is useful for students who need to learn some game theory for a related subject (e.g., microeconomics) and have a limited mathematical background. It also prepares its readers for more advanced study of game theory's applications in economics, business, and the physical, biological, and social sciences.

The authors hope this book breeds curiosity about the subject as its design is meant to to satisfy the readers. The book will prepare readers for deeper study of game theory applications in many fields of study.

Contents

Preface

Introduction

1 Combinatorial games

1.1 Definition of combinatorial games

1.2 Fundamental theorem of combinatorial games

1.3 Nim

1.4 Hex and other games

1.5 Tree games

1.6 Grundy functions

1.7 Bogus Nim-sums

1.8 Chapter summary

2 Two-person zero-sum games

2.1 Games in normal form

2.2 Saddle points and equilibrium pairs

2.3 Maximin and minimax

2.4 Mixed strategies

2.5 2-by-2 matrix games

2.6 2-by-n, m-by-2 and 3-by-3 matrix games

2.7 Linear programming

2.8 Chapter summary

3 Solving two-person zero-sum games using LP

3.1 Perfect canonical linear programming problems

3.2 The simplex method

3.3 Pivoting

3.4 The perfect phase of the simplex method

3.5 The Big M method

3.6 Bland's rules to prevent cycling

3.7 Duality and the simplex method

3.8 Solution of game matrices

3.9 Chapter summary

4 Non-zero-sum games and k-person games

4.1 The general setting

4.2 Nash equilibria

4.3 Graphical method for 2 × 2 matrix games

4.4 Inadequacies of Nash equilibria & cooperative games

4.5 The Nash arbitration procedure

4.6 Games with two or more players

4.7 Coalitions

4.8 Games in coalition form

4.9 The Shapley value

4.10 The Banzhaf power index

4.11 Imputations

4.12 Strategic equivalence

4.13 Stable sets

4.14 Chapter summary

5 Imperfect Information Games

5.1 The general setting

5.2 Complete information games in extensive form

5.3 Imperfect information games in extensive form

5.4 Games with random effects

5.5 Chapter summary

6 Computer solutions to games

6.1 Zero-sum games - invertible matrices

6.2 Zero sum games - linear program problem (LP)

6.3 Special Linear Programming Capabilities

6.4 Non-zero sum games - linear complementarity problem (LCP)

6.5 Special game packages

6.6 Chapter summary

Appendices

Appendix A Utility theory

Appendix B Nash's theorem

Appendix C Finite probability theory

Appendix D Calculus & Differentiation

Appendix E Linear Algebra

Appendix F Linear Programming

Appendix G Named Games and Game Data

Answers to selected exercises

Bibliography

Index

最近チェックした商品