確率・統計とRデータ分析<br>Probability, Statistics, and Data : A Fresh Approach Using R (Chapman & Hall/crc Texts in Statistical Science)

個数:

確率・統計とRデータ分析
Probability, Statistics, and Data : A Fresh Approach Using R (Chapman & Hall/crc Texts in Statistical Science)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 500 p.
  • 言語 ENG
  • 商品コード 9780367436674
  • DDC分類 519.5

Full Description

This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation.

The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations.

Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques.

Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.

The exercises in the book have been added to to the free and open online homework system myopenmath (https://www.myopenmath.com/) which may be useful to instructors.

Contents

1. Data in R. 2. Probability. 3. Discrete Random Variables. 4. Continuous Random Variables. 5. Simulation of Random Variables. 6. Data Manipulation. 7. Data Visualization with ggplot. 8. Inference on the Mean. 9. Rank Based Tests. 10. Tabular Data. 11. Simple Linear Regression. 11. Analysis of Variance and Comparison of Multiple Groups. 13. Multiple Regression.

最近チェックした商品