Harmonic Analysis and Applications (Studies in Advanced Mathematics)

個数:

Harmonic Analysis and Applications (Studies in Advanced Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9780367401276
  • DDC分類 515.2433

Full Description

Harmonic analysis plays an essential role in understanding a host of engineering, mathematical, and scientific ideas. In Harmonic Analysis and Applications, the analysis and synthesis of functions in terms of harmonics is presented in such a way as to demonstrate the vitality, power, elegance, usefulness, and the intricacy and simplicity of the subject. This book is about classical harmonic analysis - a textbook suitable for students, and an essay and general reference suitable for mathematicians, physicists, and others who use harmonic analysis.

Throughout the book, material is provided for an upper level undergraduate course in harmonic analysis and some of its applications. In addition, the advanced material in Harmonic Analysis and Applications is well-suited for graduate courses. The course is outlined in Prologue I. This course material is excellent, not only for students, but also for scientists, mathematicians, and engineers as a general reference. Chapter 1 covers the Fourier analysis of integrable and square integrable (finite energy) functions on R. Chapter 2 of the text covers distribution theory, emphasizing the theory's useful vantage point for dealing with problems and general concepts from engineering, physics, and mathematics. Chapter 3 deals with Fourier series, including the Fourier analysis of finite and infinite sequences, as well as functions defined on finite intervals.

The mathematical presentation, insightful perspectives, and numerous well-chosen examples and exercises in Harmonic Analysis and Applications make this book well worth having in your collection.

Contents

Prologue I-Course I
Prologue II-Fourier Transforms, Fourier Series, and Discrete Fourier Transforms
Fourier Transforms
Definitions and Formal Calculations
Algebraic Properties of Fourier Transforms
Examples
Analytic Properties of Fourier Transforms
Convolution
Approximate Identities and Examples
Pointwise Inversion of the Fourier Transform
Partial Differential Equations
Gibbs Phenomenon
The L2(R) Theory Exercises
Measures and Distribution Theory
Approximate Identities Definition of Distributions
Differentiation of Distributions
The Fourier Transform of Distributions
Convolution of Distributions
Operational Calculus
Measure Theory
Definitions from Probability Theory
Wiener's Generalized Harmonic Analysis (GHA)
exp{it2}
Exercises
Fourier Series
Fourier Series - Definitions and Convergence
History of Fourier Series
Integration and Differentiation of Fourier Series
The L1(T) and L2(T) Theories A(T) and the Wiener Inversion Theorem Maximum Entropy and Spectral Estimation
Prediction and Spectral Estimation
Discrete Fourier Transform
Fast Fourier Transform
Periodization and Sampling
Exercises
Appendices
A. Real Analysis
B. Functional Analysis
C. Fourier Analysis Formulas
D. Contributors to Fourier Analysis
Notation
Bibliography
Index

最近チェックした商品