Composite Materials Technology : Neural Network Applications

個数:

Composite Materials Technology : Neural Network Applications

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9780367384623
  • DDC分類 620.118

Full Description

Artificial neural networks (ANN) can provide new insight into the study of composite materials and can normally be combined with other artificial intelligence tools such as expert system, genetic algorithm, and fuzzy logic. Because research on this field is very new, there is only a limited amount of published literature on the subject.
Compiling information from diverse sources, Composite Materials Technology: Neural Network Applications fills the void in knowledge of these important networks, covering composite mechanics, materials characterization, product design, and other important aspects of polymer matrix composites.
Light weight, corrosion resistance, good stiffness and strength properties, and part consolidation are just some of the reasons that composites are useful in areas including civil engineering and structure, chemical processing, management, agriculture, space study, and manufacturing. ANN has already been used to carry out design prediction, mechanical property prediction, and selection processes in the evolution of composites, but although it has already been used with great success in various branches of scientific and technological research, it is still in the nascent stage of its development.
Featuring contributions from leading researchers throughout the world, this book is divided into four parts, starting with an introduction to neural networks and a review of existing literature on the subject. The text then covers structural health monitoring and damage detection in composites, addresses mechanical properties, and discusses design, analysis, and materials selection. Training, testing, and validation of experimental data were carried out to optimize the results presented in the book.
This book will be an important aid to researchers as they work on the future implementation of ANN in industries such as aerospace, automotive, marine, sporting goods, furniture, and electronics and communication.

Contents

Application of Artificial Neural Network in Composites Materials. Network Approaches for Defect Detection in Composite Materials. The Use of Artificial Neural Networks in Damage Detection and Assessment in Polymeric Composite Structures. Damage Identification and Localization of Carbon Fiber-Reinforced Plastic Composite Plate Using Outlier Analysis and Multilayer Perceptron Neural Network. Damage Localization of Carbon Fiber-Reinforced Plastic Composite and Perspex Plates Using Novelty Indices and the Cross-Validation Set of Multilayer Perceptron Neural Network. Impact Damage Detection in a Composite Structure Using Artificial Neural Network. Artificial Neural Networks for Predicting the Mechanical Behavior of Cement-Based Composites after 100 Cycles of Aging. Fatigue Life Prediction of Fiber-Reinforced Composites Using Artificial Neural Networks. Optimizing Neural Network Prediction of Composite Fatigue Life Under Variable Amplitude Loading Using Bayesian Regularization. Free Vibration Analysis and Optimal Design of the Adhesively Bonded Composite Single Lap and Tubular Lap Joints. Determining Initial Design Parameters by Using Genetically. Optimized Neural Network Systems. Development of a Prototype Computational Framework for Selection of Natural Fiber-Reinforced Polymer Composite Materials Using Neural Network. Index.

最近チェックした商品