Bayesian Modeling in Bioinformatics (Chapman & Hall/crc Biostatistics Series)

個数:

Bayesian Modeling in Bioinformatics (Chapman & Hall/crc Biostatistics Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 466 p.
  • 言語 ENG
  • 商品コード 9780367383657
  • DDC分類 570.285

Full Description

Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and classification problems in two main high-throughput platforms: microarray gene expression and phylogenic analysis.

The book explores Bayesian techniques and models for detecting differentially expressed genes, classifying differential gene expression, and identifying biomarkers. It develops novel Bayesian nonparametric approaches for bioinformatics problems, measurement error and survival models for cDNA microarrays, a Bayesian hidden Markov modeling approach for CGH array data, Bayesian approaches for phylogenic analysis, sparsity priors for protein-protein interaction predictions, and Bayesian networks for gene expression data. The text also describes applications of mode-oriented stochastic search algorithms, in vitro to in vivo factor profiling, proportional hazards regression using Bayesian kernel machines, and QTL mapping.

Focusing on design, statistical inference, and data analysis from a Bayesian perspective, this volume explores statistical challenges in bioinformatics data analysis and modeling and offers solutions to these problems. It encourages readers to draw on the evolving technologies and promote statistical development in this area of bioinformatics.

Contents

Estimation and Testing in Time-Course Microarray Experiments, Classification for Differential Gene Expression Using Bayesian Hierarchical Models, Applications of the Mode Oriented Stochastic Search (MOSS) for Discrete Multi-Way Data to Genome -Wide Studies, Nonparametric Bayesian Bioinformatics, Measurement Error Models for cDNA Microarray and Time-to-Event Data with Applications to Breast Cancer, Robust Inference for Differential Gene Expression, Hidden Markov Modeling of Array CGH Data, Recent Developments in Bayesian Phylogenetics, Gene Selection for the Identification of Biomarkers in High-Throughput Data, Sparsity Priors for Protein-Protein Interaction Predictions, Learning Bayesian Networks for Gene Expression Data, In Vitro to In Vivo Factor Profiling in Expression Genomics, Proportional Hazards Regression Using Bayesian Kernel Machines, Mixture Model for Protein Biomarker Discovery, and Bandopadhyay Bayesian Methods for Detecting Differentially Expressed and Empirical Bayes Methods for Spotted Microarray Data Bayesian Classification Method for QTL Mapping

最近チェックした商品