Spectral Methods Using Multivariate Polynomials on the Unit Ball (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

個数:
電子版価格
¥11,151
  • 電子版あり

Spectral Methods Using Multivariate Polynomials on the Unit Ball (Chapman & Hall/crc Monographs and Research Notes in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 274 p.
  • 言語 ENG
  • 商品コード 9780367345471
  • DDC分類 515.353

Full Description


Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problemsSuitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problemOne of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.

Contents

1. Introduction. 1.1 An illustrative example. 1.2 Transformation of problem. 1.3 Function spaces. 1.4 Variational reformulation. 1.5 A spectral method. 1.6 Numerical example. 1.7 Exterior problems. 2 Multivariate Polynomials. 2.1 Multivariate polynomials. 2.2 Triple recursion relation. 2.3 Rapid evaluation of orthonormal polynomials. 2.4 A Clenshaw algorithm. 2.5 Best approximation. 2.6 Quadrature over the unit disk, unit ball, and unit sphere. 2.7 Least squares approximation. 2.8 Matlab programs and numerical examples. 3 Creating Transformations of Regions. 3.1 Constructions of . 3.2 An integration-based mapping formula. 3.3 Iteration methods. 3.4 Mapping in three dimensions. 4 Galerkin's method for the Dirichlet and Neumann Problems. 4.1 Implementation. 4.2 Convergence analysis. 4.3 The Neumann problem. 4.4 Convergence analysis for the Neumann problem. 4.5 The Neumann problem with = 0. 4.6 De ning surface normals and Jacobian for a general surface. 5 Eigenvalue Problems. 5.1 Numerical solution - Dirichlet problem. 5.2 Numerical examples - Dirichlet problem. 5.3 Convergence analysis - Dirichlet problem. 5.4 Numerical solution - Neumann problem. 6 Parabolic problems. 6.1 Reformulation and numerical approximation. 6.2 Numerical examples. 6.3 Convergence analysis. 7 Nonlinear Equations. 7.2 Numerical examples. 7.3 Convergence analysis. 7.4 Neumann boundary value problem. 8 Nonlinear Neumann Boundary Value Problem. 8.1 The numerical method. 8.2 Numerical examples. 8.3 Error analysis. 8.4 An existence theorem for the three dimensional Stefan--Boltzmann problem. 9 The biharmonic equation. 9.1 The weak reformulation. 9.2 The numerical method. 9.3 Numerical Examples. 9.4 The eigenvalue problem. 10 Integral Equations. 10.1 Galerkin's numerical method. 10.2 Error analysis. 10.3 An integral equation of the rst kind

最近チェックした商品