Bayesian Nonparametrics for Causal Inference and Missing Data (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

個数:

Bayesian Nonparametrics for Causal Inference and Missing Data (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9780367341008
  • DDC分類 519.542

Full Description

Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.

The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.

Features

• Thorough discussion of both BNP and its interplay with causal inference and missing data

• How to use BNP and g-computation for causal inference and non-ignorable missingness

• How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions

• Detailed case studies illustrating the application of BNP methods to causal inference and missing data

• R code and/or packages to implement BNP in causal inference and missing data problems

The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

Contents

Part I. Overview of Bayesian inference in causal inference and missing data and identifiability. 1. Overview of causal inference. 2. Overview of missing data. 3. Overview of Bayesian Inference for Missing Data and Causal Inference. Part II. Bayesian nonparametrics for causal inference and missing data. 4. Identifiability and Sensitivity Analysis. 5. Bayesian Decision Trees and their Ensembles. Part III. Identification and sensitivity analysis. 6. Dirichlet Process Mixtures and extensions. 7. Gaussian process prior and Dependent Dirichlet processes. 8. Causal Inference on Quantiles using Propensity scores. 9. Causal Inference with a point treatment using an EDPM model. 10. DDP+GP for causal inference using marginal structural models. 11. DPMs for Dropout in Longitudinal Studies. 12. DPMs for Non-Monotone Missingness.

最近チェックした商品