高次元データのためのスパース・グラフィカル・モデリング<br>Sparse Graphical Modeling for High Dimensional Data : A Paradigm of Conditional Independence Tests (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

個数:

高次元データのためのスパース・グラフィカル・モデリング
Sparse Graphical Modeling for High Dimensional Data : A Paradigm of Conditional Independence Tests (Chapman & Hall/crc Monographs on Statistics and Applied Probability)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 130 p.
  • 言語 ENG
  • 商品コード 9780367183738
  • DDC分類 519.5

Full Description

This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.

Key Features:




A general framework for learning sparse graphical models with conditional independence tests



Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data



Unified treatments for data integration, network comparison, and covariate adjustment



Unified treatments for missing data and heterogeneous data



Efficient methods for joint estimation of multiple graphical models



Effective methods of high-dimensional variable selection
Effective methods of high-dimensional inference

Contents

1. Introduction to Sparse Graphical Models 2. Gaussian Graphical Models 3. Gaussian Graphical Modeling with Missing Data 4. Gaussian Graphical Modeling for Heterogeneous Data 5. Poisson Graphical Models 6. Mixed Graphical Models 7. Joint Estimation of Multiple Graphical Models 8. Nonlinear and Non-Gaussian Graphical Models 9. High-Dimensional Inference with the Aid of Sparse Graphical Modeling 10. Appendix

最近チェックした商品