Brain-Computer Interfaces (Advances in Neural Engineering)

個数:
電子版価格
¥31,772
  • 電子版あり

Brain-Computer Interfaces (Advances in Neural Engineering)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 498 p.
  • 言語 ENG
  • 商品コード 9780323954396
  • DDC分類 006.42

Full Description

Advances in Neural Engineering: Brain-Computer Interfaces, Volume Two covers the broad spectrum of neural engineering subfields and applications. The set provides a comprehensive review of dominant feature extraction methods and classification algorithms in the brain-computer interfaces for motor imagery tasks. The book's authors discuss existing challenges in the domain of motor imagery brain-computer interface and suggest possible research directions. The field of neural engineering deals with many aspects of basic and clinical problems associated with neural dysfunction, including sensory and motor information, stimulation of the neuromuscular system to control muscle activation and movement, analysis and visualization of complex neural systems, and more.

Contents

1. Advances in Human Activity Recognition: Harnessing Machine Learning And Deep Learning With Topological Data Analysis
2. Design And Validation Of A Hybrid Programmable Platform For The Acquisition Of Exg Signals
3. FBSE Based Automated Classification of Motor Imagery EEG Signals in Brain-Computer Interface
4. Automated Detection Of Brain Disease Using Quantum Machine Learning
5. A Study Of The Relationship Of Wavelet Transform Parameters And Their Impact On Eeg Classification Performance
6. Bcis For Stroke Rehabilitation
7. Decoding Imagined Speech For Eeg-Based Bci
8. A Comparison Of Deep Learning Methods And Conventional Methods For Classification Of Ssvep Signals In Brain Computer Interface Framework
9. Benchmarking Convolutional Neural Networks On Continuous Eeg Signals: The Case Of Motor Imagery-Based Bci
10. Advancements in The Diagnosis Of Alzheimer'S Disease (Ad) Through Biomarker Detection
11. Alcoholism Identification By Processing The Eeg Signals Using Oscillatory Modes Decomposition And Machine Learning
12. Investigating the role of cortical rhythms in modulating kinematic synergies and exploring their potential for stroke rehabilitation
13. Stimulus-Independent Non-Invasive Bci Based On Eeg Patterns Of Inner Speech
14. A Review of Modern Brain Computer Interface Investigations And Limits
15. Non-Invasive Brain-Computer Interfaces Using Fnirs, Eeg And Hybrid Fnirs/Eeg
16. Eeg-Based Cognitive Fatigue Recognition Via Machine Learning and Analysis Of Multidomain Features
17. Passive Brain-Computer Interfaces for Cognitive and Pathological Brain Physiological States Monitoring And Control
18. Beyond Brainwaves: Recommendations for Integrating Robotics & Virtual Reality for Eeg-Driven Brain-Computer Interface
19. A Sociotechnical Systems Perspective To Support Brain-Computer Interface Development
20. Assessing Systemic Benefit and Risk in The Development Of Bci Neurotechnology
21. Recent Development of Single Channel EEG-Based Automated Sleep Stage Classification: Review And Future Perspectives

最近チェックした商品