Computational Methods and Deep Learning for Ophthalmology

個数:
電子版価格
¥27,098
  • 電子版あり

Computational Methods and Deep Learning for Ophthalmology

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 言語 ENG
  • 商品コード 9780323954150
  • DDC分類 617.70285631

Full Description

Computational Methods and Deep Learning for Ophthalmology presents readers with the concepts and methods needed to design and use advanced computer-aided diagnosis systems for ophthalmologic abnormalities in the human eye.  Chapters cover computational approaches for diagnosis and assessment of a variety of ophthalmologic abnormalities. Computational approaches include topics such as Deep Convolutional Neural Networks, Generative Adversarial Networks, Auto Encoders, Recurrent Neural Networks, and modified/hybrid Artificial Neural Networks. Ophthalmological abnormalities covered include Glaucoma, Diabetic Retinopathy, Macular Degeneration, Retinal Vein Occlusions, eye lesions, cataracts, and optical nerve disorders.

This handbook provides biomedical engineers, computer scientists, and multidisciplinary researchers with a significant resource for addressing the increase in the prevalence of diseases such as Diabetic Retinopathy, Glaucoma, and Macular Degeneration.

Contents

1. Classification of ocular diseases using transfer learning approaches and glaucoma severity grading

D. Selvathi

2. Early diagnosis of diabetic retinopathy using deep learning techniques

Bam Bahadur Sinha, R. Dhanalakshmi and K. Balakrishnan

3. Comparison of deep CNNs in the identification of DME structural changes in retinal OCT scans

N. Padmasini, R. Umamaheswari, Mohamed Yacin Sikkandar and Manavi D. Sindal

4. Epidemiological surveillance of blindness using deep learning approaches

Kurubaran Ganasegeran and Mohd Kamarulariffin Kamarudin

5. Transfer learning-based detection of retina damage from optical coherence tomography images

Bam Bahadur Sinha, Alongbar Wary, R. Dhanalakshmi and K. Balakrishnan

6. An improved approach for classification of glaucoma stages from color fundus images using Efficientnet-b0 convolutional neural network and recurrent neural network

Poonguzhali Elangovan, D. Vijayalakshmi and Malaya Kumar Nath

7. Diagnosis of ophthalmic retinoblastoma tumors using 2.75D CNN segmentation technique

T. Jemima Jebaseeli and D. Jasmine David

8. Fast bilateral filter with unsharp masking for the preprocessing of optical coherence tomography images - an aid for segmentation and classification

Ranjitha Rajan and S.N. Kumar

9. Deep learning approaches for the retinal vasculature segmentation in fundus images

V. Sathananthavathi and G. Indumathi

10. Grading of diabetic retinopathy using deep learning techniques

Asha Gnana Priya H, Anitha J and Ebenezer Daniel

11. Segmentation of blood vessels and identification of lesion in fundus image by using fractional derivative in fuzzy domain

V.P. Ananthi and G. Santhiya

12. U-net autoencoder architectures for retinal blood vessels segmentation

S. Deivalakshmi, R. Adarsh, J. Sudaroli Sandana and Gadipudi Amarnageswarao

13. Detection and diagnosis of diseases by feature extraction and analysis on fundus images using deep learning techniques

Ajantha Devi Vairamani

最近チェックした商品