ロボットの触覚・スキル学習・巧みな操作<br>Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

個数:
電子版価格
¥28,333
  • 電子版あり

ロボットの触覚・スキル学習・巧みな操作
Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 372 p.
  • 言語 ENG
  • 商品コード 9780323904452
  • DDC分類 629.892

Full Description

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches.

The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.

Contents

Part I: Tactile sensing and perception
1. Tactile sensors for dexterous manipulation
2. Robotic perception of object properties using tactile sensing
3. Multimodal perception for dexterous manipulation
4. Using Machine Learning for Material Detection with Capacitive Proximity Sensors

Part II: Skill representation and learning
5. Admittance control: learning from human and collaboration with human
6. Sensorimotor Control for Dexterous Grasping--Inspiration from human hand
7. Efficient Haptic Learning and Interaction
8. From human to robot grasping: kinematics and forces synergies
9. Learning a form-closure grasping with attractive region in environment
10. Learning hierarchical control for robust in-hand manipulation
11. Learning Industrial Assembly by Guided-DDPG

Part III: Robotic hand adaptive control
12. The novel poly-articulated prosthetic hand Hannes: A survey study, and clinical evaluation
13. Enhancing vision control by tactile sensing for robotic manipulation
14. Neural Network enhanced Optimal Control of Manipulator
15. Towards Dexterous In-Hand Manipulation of Unknown Objects: A Feedback Based Control Approach
16. Learning Industrial Assembly by Guided-DDPG

最近チェックした商品