Software Security Engineering : A Guide for Project Managers (Sei Series in Software Engineering)

個数:

Software Security Engineering : A Guide for Project Managers (Sei Series in Software Engineering)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9780321509178
  • DDC分類 005.8

Full Description

"This book's broad overview can help an organization choose a set of processes, policies, and techniques that are appropriate for its security maturity, risk tolerance, and development style. This book will help you understand how to incorporate practical security techniques into all phases of the development lifecycle."

      —Steve Riley, senior security strategist, Microsoft Corporation

 

"There are books written on some of the topics addressed in this book, and there are other books on secure systems engineering. Few address the entire life cycle with a comprehensive overview and discussion of emerging trends and topics as well as this one."

      —Ronda Henning, senior scientist-software/security queen, Harris Corporation

 

Software that is developed from the beginning with security in mind will resist, tolerate, and recover from attacks more effectively than would otherwise be possible. While there may be no silver bullet for security, there are practices that project managers will find beneficial. With this management guide, you can select from a number of sound practices likely to increase the security and dependability of your software, both during its development and subsequently in its operation.

 

Software Security Engineering draws extensively on the systematic approach developed for the Build Security In (BSI) Web site. Sponsored by the Department of Homeland Security Software Assurance Program, the BSI site offers a host of tools, guidelines, rules, principles, and other resources to help project managers address security issues in every phase of the software development life cycle (SDLC). The book's expert authors, themselves frequent contributors to the BSI site, represent two well-known resources in the security world: the CERT Program at the Software Engineering Institute (SEI) and Cigital, Inc., a consulting firm specializing in software security.

 

This book will help you understand why



Software security is about more than just eliminating vulnerabilities and conducting penetration tests
Network security mechanisms and IT infrastructure security services do not sufficiently protect application software from security risks
Software security initiatives should follow a risk-management approach to identify priorities and to define what is "good enough"—understanding that software security risks will change throughout the SDLC
Project managers and software engineers need to learn to think like an attacker in order to address the range of functions that software should not do, and how software can better resist, tolerate, and recover when under attack


Chapter 1: Why Is Security a Software Issue? 1

1.1 Introduction 1

1.2 The Problem 2

1.3 Software Assurance and Software Security 6

1.4 Threats to Software Security 9

1.5 Sources of Software Insecurity 11

1.6 The Benefits of Detecting Software Security Defects Early 13

1.7 Managing Secure Software Development 18

1.8 Summary 23

 

Chapter 2: What Makes Software Secure? 25

2.1 Introduction 25

2.2 Defining Properties of Secure Software 26

2.3 How to Influence the Security Properties of Software 36

2.4 How to Assert and Specify Desired Security Properties 61

2.5 Summary 71

 

Chapter 3: Requirements Engineering for Secure Software 73

3.1 Introduction 73

3.2 Misuse and Abuse Cases 78

3.3 The SQUARE Process Model 84

3.4 SQUARE Sample Outputs 91

3.5 Requirements Elicitation 99

3.6 Requirements Prioritization 106

3.7 Summary 112

 

Chapter 4: Secure Software Architecture and Design 115

4.1 Introduction 115

4.2 Software Security Practices for Architecture and Design: Architectural Risk Analysis 119

4.3 Software Security Knowledge for Architecture and Design: Security Principles, Security Guidelines, and Attack Patterns 137

4.4 Summary 148

 

Chapter 5: Considerations for Secure Coding and Testing 151

5.1 Introduction 151

5.2 Code Analysis 152

5.3 Coding Practices 160

5.4 Software Security Testing 163

5.5 Security Testing Considerations Throughout the SDLC 173

5.6 Summary 180

 

Chapter 6: Security and Complexity: System Assembly Challenges 183

6.1 Introduction 183

6.2 Security Failures 186

6.3 Functional and Attacker Perspectives for Security Analysis: Two Examples 189

6.4 System Complexity Drivers and Security 203

6.5 Deep Technical Problem Complexity 215

6.6 Summary 217

 

Chapter 7: Governance, and Managing for More Secure Software 221

7.1 Introduction 221

7.2 Governance and Security 223

7.3 Adopting an Enterprise Software Security Framework 226

7.4 How Much Security Is Enough? 236

7.5 Security and Project Management 244

7.6 Maturity of Practice 259

7.7 Summary 266

 

Chapter 8: Getting Started 267

8.1 Where to Begin 269

8.2 In Closing 281

Contents

Foreword xi

Preface xiii

About the Authors xxiii

 

Chapter 1: Why Is Security a Software Issue? 1

1.1 Introduction 1

1.2 The Problem 2

1.3 Software Assurance and Software Security 6

1.4 Threats to Software Security 9

1.5 Sources of Software Insecurity 11

1.6 The Benefits of Detecting Software Security Defects Early 13

1.7 Managing Secure Software Development 18

1.8 Summary 23

 

Chapter 2: What Makes Software Secure? 25

2.1 Introduction 25

2.2 Defining Properties of Secure Software 26

2.3 How to Influence the Security Properties of Software 36

2.4 How to Assert and Specify Desired Security Properties 61

2.5 Summary 71

 

Chapter 3: Requirements Engineering for Secure Software 73

3.1 Introduction 73

3.2 Misuse and Abuse Cases 78

3.3 The SQUARE Process Model 84

3.4 SQUARE Sample Outputs 91

3.5 Requirements Elicitation 99

3.6 Requirements Prioritization 106

3.7 Summary 112

 

Chapter 4: Secure Software Architecture and Design 115

4.1 Introduction 115

4.2 Software Security Practices for Architecture and Design: Architectural Risk Analysis 119

4.3 Software Security Knowledge for Architecture and Design: Security Principles, Security Guidelines, and Attack Patterns 137

4.4 Summary 148

 

Chapter 5: Considerations for Secure Coding and Testing 151

5.1 Introduction 151

5.2 Code Analysis 152

5.3 Coding Practices 160

5.4 Software Security Testing 163

5.5 Security Testing Considerations Throughout the SDLC 173

5.6 Summary 180

 

Chapter 6: Security and Complexity: System Assembly Challenges 183

6.1 Introduction 183

6.2 Security Failures 186

6.3 Functional and Attacker Perspectives for Security Analysis: Two Examples 189

6.4 System Complexity Drivers and Security 203

6.5 Deep Technical Problem Complexity 215

6.6 Summary 217

 

Chapter 7: Governance, and Managing for More Secure Software 221

7.1 Introduction 221

7.2 Governance and Security 223

7.3 Adopting an Enterprise Software Security Framework 226

7.4 How Much Security Is Enough? 236

7.5 Security and Project Management 244

7.6 Maturity of Practice 259

7.7 Summary 266

 

Chapter 8: Getting Started 267

8.1 Where to Begin 269

8.2 In Closing 281

 

Glossary 283

References 291

Build Security In Web Site References 311

Index 317

最近チェックした商品