- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Dendrites are complex neuronal structures that receive and integrate synaptic input from other nerve cells. They therefore play a critical role in brain function. Although dendrites were discovered over a century ago, due to the development of powerful new techniques there has been a dramatic resurgence of interest in the properties and function of these beautiful structures.
This is the third edition of the first book devoted exclusively to dendrites. It contains a comprehensive survey of the current state of dendritic research across a wide range of topics, from dendritic morphology, evolution, development, and plasticity through to the electrical, biochemical and computational properties of dendrites, and finally to the key role of dendrites in brain disease. The third edition has been thoroughly revised, with the addition of a number of new chapters and comprehensive updates or rewrites of existing chapters by leading experts.
"Dendrites" will be of interest to researchers and students in neuroscience and related fields, as well as to anyone interested in how the brain works.
Contents
1: Kristen M. Harris and Josef Spacek: Dendrite structure
2: Samuel S.-H. Wang, Anthony E. Ambrosini, and Gayle M. Wittenberg: Evolution and Scaling of Dendrites
3: Hollis T. Cline: Dendrite Development
4: Franck Polleux, Anirvan Ghosh, and Wesley B. Grueber: Molecular Determinants of Dendrite and Spine Development
5: Irena Vlatkovic and Erin M. Schuman: Local translation in dendrites
6: Natasha K. Hussain and Richard L. Huganir: Structure and Molecular Organization of the Postsynaptic Density
7: Zoltan Nusser: Subcellular Distribution of Ligand- and Voltage-Gated Ion Channels
8: R. Angus Silver, Andrew F. MacAskill, and Mark Farrant: Neurotransmitter-gated ion channels in dendrites
9: Jeffrey C. Magee: Dendritic Voltage-gated Ion Channels
10: Fritjof Helmchen and U. Valentin Nägerl: Biochemical compartmentalization in dendrites
11: Adam Carter and Bernardo Sabatini: Spine Calcium Signaling
12: Nelson Spruston, Greg Stuart, and Michael Häusser: Principles of Dendritic Integration
13: Lucy Palmer, Masanori Murayama, and Matthew Larkum: Dendritic integration in vivo
14: Wilfrid Rall: Modeling dendrites: A personal perspective
15: Etay Hay, Albert Gidon, Michael London, and Idan Segev: A theoretical view of the neuron as an input-output computing device
16: Bartlett W. Mel: Towards a simplified model of an active dendritic tree
17: Hermann Cuntz: Modelling dendrite shape
18: Jérôme Maheux, Robert C. Froemke, and P. Jesper Sjöström: Functional Plasticity at Dendritic Synapses
19: Tobias Bonhoeffer and Pico Caroni: Structural plasticity in dendrites and spines
20: Ryohei Yasuda: Molecular signaling during plasticity of dendritic spines
21: Nathaniel Urban and Troy W. Margrie: Dendrites as Transmitters
22: Kevin M. Boergens, Manuel Berning, Moritz Helmstaedter: Dendritic connectomics
23: Richard B. Dewell, Fabrizio Gabbiani: Linking Dendritic Processing to Computation and Behavior in Invertebrates
24: Daniel Johnston, Andreas Frick, and Nicholas Poolos: Dendrites and Disease
25: Michael Häusser, Nelson Spruston, and Greg Stuart: The Future of Dendrite Research