Graphical Models (Oxford Statistical Science Series) (2ND)

個数:
  • 予約
  • ポイントキャンペーン

Graphical Models (Oxford Statistical Science Series) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 496 p.
  • 言語 ENG
  • 商品コード 9780198706182

Full Description

The idea of modelling systems using graph theory has its origin in several scientific areas: in statistical physics (the study of large particle systems), in genetics (studying inheritable properties of natural species), and in interactions in contingency tables.

This new and extended edition of Graphical Models provides the basic mathematical and statistical theory of graphical models, incorporating the many advances that have been made in the field since the publication of the first edition in 1996. Lauritzen discusses basic graph theory and the fundamentals of conditional independence both in abstract form for conditional independence based on graphs and for probabilistic conditional independence. The associated Markov theory, forming the basis of all models in the book, is treated in some detail. The statistical theory based on likelihood methods and conjugate Bayesian analysis is developed for log-linear and Gaussian graphical models, as well as for graphical models involving mixed discrete and continuous data. A new and important chapter is devoted to structure estimation because this has become a dominating part of modern developments. Causal interpretation of models based on directed acyclic graphs and chain graphs are also discussed.

The appendices contain some of the general mathematical results needed as background for the main contents of the book, including basic measure theory and the theory of Markov kernels, convex optimization, properties of the multivariate Gaussian distributions and derived distributions, as well as a brief exposition of the theory of exponential families.

最近チェックした商品