Just Enough Data Science and Machine Learning : Essential Tools and Techniques

個数:

Just Enough Data Science and Machine Learning : Essential Tools and Techniques

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 224 p.
  • 言語 ENG
  • 商品コード 9780138340742
  • DDC分類 004

Full Description

An accessible introduction to applied data science and machine learning, with minimal math and code required to master the foundational and technical aspects of data science.

In Just Enough Data Science and Machine Learning, authors Mark Levene and Martyn Harris present a comprehensive and accessible introduction to data science. It allows the readers to develop an intuition behind the methods adopted in both data science and machine learning, which is the algorithmic component of data science involving the discovery of patterns from input data. This book looks at data science from an applied perspective, where emphasis is placed on the algorithmic aspects of data science and on the fundamental statistical concepts necessary to understand the subject.

The book begins by exploring the nature of data science and its origins in basic statistics. The authors then guide readers through the essential steps of data science, starting with exploratory data analysis using visualisation tools. They explain the process of forming hypotheses, building statistical models, and utilising algorithmic methods to discover patterns in the data. Finally, the authors discuss general issues and preliminary concepts that are needed to understand machine learning, which is central to the discipline of data science.

The book is packed with practical examples and real-world data sets throughout to reinforce the concepts. All examples are supported by Python code external to the reading material to keep the book timeless.

Notable features of this book:



Clear explanations of fundamental statistical notions and concepts
Coverage of various types of data and techniques for analysis
In-depth exploration of popular machine learning tools and methods
Insight into specific data science topics, such as social networks and sentiment analysis
Practical examples and case studies for real-world application
Recommended further reading for deeper exploration of specific topics.

Contents

List of Figures       ix

Preface        xvii

About the Authors        xix

 

Chapter 1. What Is Data Science?        1

 

Chapter 2. Basic Statistics         3

2.1 Introductory Statistical Notions         3

2.2 Expectation         17

2.3 Variance         21

2.4 Correlation         26

2.5 Regression         28

2.6 Chapter Summary         32

 

Chapter 3. Types of Data         33

3.1 Tabular Data         33

3.2 Textual Data         38

3.3 Image, Video, and Audio Data         40

3.4 Time Series Data         41

3.5 Geographical Data         42

3.6 Social Network Data         44

3.7 Transforming Data         46

3.8 Chapter Summary         51

 

Chapter 4. Machine Learning Tools         52

4.1 What Is Machine Learning?         52

4.2 Evaluation         57

4.3 Supervised Methods         68

4.4 Unsupervised Methods         105

4.5 Semi-Supervised Methods         125

4.6 Chapter Summary         129

 

Chapter 5. Data Science Topics         130

5.1 Searching, Ranking, and Rating         130

5.2 Social Networks         150

5.3 Three Natural Language Processing Topics         171

5.4 Chapter Summary         183

 

Chapter 6. Selected Additional Topics         184

6.1 Neuro-Symbolic AI         184

6.2 Conversational AI         185

6.3 Generative Neural Networks         185

6.4 Trustworthy AI         186

6.5 Large Language Models         187

6.6 Epilogue         187

 

Chapter 7. Further Reading         189

7.1 Basic Statistics         189

7.2 Data Science         189

7.3 Machine Learning         190

7.4 Deep Learning         191

7.5 Research Papers         191

7.6 Python         191

 

Bibliography         192 

Index         195

最近チェックした商品