The Definitive Guide to KQL : Using Kusto Query Language for operations, defending, and threat hunting (Business Skills)

個数:

The Definitive Guide to KQL : Using Kusto Query Language for operations, defending, and threat hunting (Business Skills)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 480 p.
  • 言語 ENG
  • 商品コード 9780138293383
  • DDC分類 005.8

Full Description

Turn the avalanche of raw data from Azure Data Explorer, Azure Monitor, Microsoft Sentinel, and other Microsoft data platforms into actionable intelligence with KQL (Kusto Query Language). Experts in information security and analysis guide you through what it takes to automate your approach to risk assessment and remediation, speeding up detection time while reducing manual work using KQL. This accessible and practical guide—designed for a broad range of people with varying experience in KQL—will quickly make KQL second nature for information security.

Solve real problems with Kusto Query Language— and build your competitive advantage:



Learn the fundamentals of KQL—what it is and where it is used
Examine the anatomy of a KQL query
Understand why data summation and aggregation is important
See examples of data summation, including count, countif, and dcount
Learn the benefits of moving from raw data ingestion to a more automated approach for security operations
Unlock how to write efficient and effective queries
Work with advanced KQL operators, advanced data strings, and multivalued strings
Explore KQL for day-to-day admin tasks, performance, and troubleshooting
Use KQL across Azure, including app services and function apps
Delve into defending and threat hunting using KQL
Recognize indicators of compromise and anomaly detection
Learn to access and contribute to hunting queries via GitHub and workbooks via Microsoft Entra ID

Contents

Foreword by Ann Johnson

CHAPTER 1      Introduction and Fundamentals

CHAPTER 2      Data Aggregation

CHAPTER 3      Unlocking Insights with Advanced KQL Operators

CHAPTER 4      Operational Excellence with KQL

CHAPTER 5      KQL for Cybersecurity—Defending and Threat Hunting

CHAPTER 6      Advanced KQL Cybersecurity Use Cases and Operators

最近チェックした商品