Foundational Python for Data Science (Addison-wesley Data & Analytics Series)

個数:

Foundational Python for Data Science (Addison-wesley Data & Analytics Series)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780136624356
  • DDC分類 006.31

Full Description

Data science and machine learning—two of the world's hottest fields—are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. 

Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving.

Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more—all created with Colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.

Contents

Preface xiii
I:  Learning Python in a Notebook Environment 1
1  Introduction to Notebooks 3
2  Fundamentals of Python 13
3  Sequences 25
4  Other Data Structures 37
5  Execution Control 55
6  Functions 67
II: Data Science Libraries 83
7  NumPy 85
8  SciPy 103
9  Pandas 113
10  Visualization Libraries 135
11  Machine Learning Libraries 153
12  Natural Language Toolkit 159
III: Intermediate Python 171
13  Functional Programming 173
14  Object-Oriented Programming 187
15  Other Topics 201
A  Answers to End-of-Chapter Questions 215
Index 221

最近チェックした商品