Student Solutions Manual for Stats : Data and Models (5TH)

個数:
  • ポイントキャンペーン

Student Solutions Manual for Stats : Data and Models (5TH)

  • ウェブストア価格 ¥13,091(本体¥11,901)
  • Pearson(2019/09発売)
  • 外貨定価 UK£ 44.44
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 238pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9780135163979

Contents

I: EXPLORING AND UNDERSTANDING DATA

1. Stats Starts Here

1.1 What Is Statistics?
1.2 Data
1.3 Variables
1.4 Models


2. Displaying and Describing Data

2.1 Summarizing and Displaying a Categorical Variable
2.2 Displaying a Quantitative Variable
2.3 Shape
2.4 Center
2.5 Spread


3. Relationships Between Categorical Variables-Contingency Tables

3.1 Contingency Tables
3.2 Conditional Distributions
3.3 Displaying Contingency Tables
3.4 Three Categorical Variables


4. Understanding and Comparing Distributions

4.1 Displays for Comparing Groups
4.2 Outliers
4.3 Re-Expressing Data: A First Look


5. The Standard Deviation as a Ruler and the Normal Model

5.1 Using the Standard Deviation to Standardize Values
5.2 Shifting and Scaling
5.3 Normal Models
5.4 Working with Normal Percentiles
5.5 Normal Probability Plots
Review of Part I: Exploring and Understanding Data



II. EXPLORING RELATIONSHIPS BETWEEN VARIABLES

6. Scatterplots, Association, and Correlation

6.1 Scatterplots
6.2 Correlation
6.3 Warning: Correlation ≠ Causation
6.4 Straightening Scatterplots


7. Linear Regression

7.1 Least Squares: The Line of "Best Fit"
7.2 The Linear Model
7.3 Finding the Least Squares Line
7.4 Regression to the Mean
7.5 Examining the Residuals
7.6 R2: The Variation Accounted for by the Model
7.7 Regression Assumptions and Conditions


8. Regression Wisdom

8.1 Examining Residuals
8.2 Extrapolation: Reaching Beyond the Data
8.3 Outliers, Leverage, and Influence
8.4 Lurking Variables and Causation
8.5 Working with Summary Values
8.6 Straightening Scatterplots: The Three Goals
8.7 Finding a Good Re-Expression


9. Multiple Regression

9.1 What Is Multiple Regression?
9.2 Interpreting Multiple Regression Coefficients
9.3 The Multiple Regression Model: Assumptions and Conditions
9.4 Partial Regression Plots
9.5 Indicator Variables
Review of Part II: Exploring Relationships Between Variables



III. GATHERING DATA

10. Sample Surveys

10.1 The Three Big Ideas of Sampling
10.2 Populations and Parameters
10.3 Simple Random Samples
10.4 Other Sampling Designs
10.5 From the Population to the Sample: You Can't Always Get What You Want
10.6 The Valid Survey
10.7 Common Sampling Mistakes, or How to Sample Badly


11. Experiments and Observational Studies

11.1 Observational Studies
11.2 Randomized, Comparative Experiments
11.3 The Four Principles of Experimental Design
11.4 Control Groups
11.5 Blocking
11.6 Confounding
Review of Part III: Gathering Data



IV. RANDOMNESS AND PROBABILITY

12. From Randomness to Probability

12.1 Random Phenomena
12.2 Modeling Probability
12.3 Formal Probability


13. Probability Rules!

13.1 The General Addition Rule
13.2 Conditional Probability and the General Multiplication Rule
13.3 Independence
13.4 Picturing Probability: Tables, Venn Diagrams, and Trees
13.5 Reversing the Conditioning and Bayes' Rule


14. Random Variables

14.1 Center: The Expected Value
14.2 Spread: The Standard Deviation
14.3 Shifting and Combining Random Variables
14.4 Continuous Random Variables


15. Probability Models

15.1 Bernoulli Trials
15.2 The Geometric Model
15.3 The Binomial Model
15.4 Approximating the Binomial with a Normal Model
15.5 The Continuity Correction
15.6 The Poisson Model
15.7 Other Continuous Random Variables: The Uniform and the Exponential
Review of Part IV: Randomness and Probability



V. INFERENCE FOR ONE PARAMETER

16. Sampling Distribution Models and Confidence Intervals for Proportions

16.1 The Sampling Distribution Model for a Proportion
16.2 When Does the Normal Model Work? Assumptions and Conditions
16.3 A Confidence Interval for a Proportion
16.4 Interpreting Confidence Intervals: What Does 95% Confidence Really Mean?
16.5 Margin of Error: Certainty vs. Precision
16.6 Choosing the Sample Size


17. Confidence Intervals for Means

17.1 The Central Limit Theorem
17.2 A Confidence Interval for the Mean
17.3 Interpreting Confidence Intervals
17.4 Picking Our Interval up by Our Bootstraps
17.5 Thoughts About Confidence Intervals


18. Testing Hypotheses

18.1 Hypotheses
18.2 P-Values
18.3 The Reasoning of Hypothesis Testing
18.4 A Hypothesis Test for the Mean
18.5 Intervals and Tests
18.6 P-Values and Decisions: What to Tell About a Hypothesis Test


19. More About Tests and Intervals

19.1 Interpreting P-Values
19.2 Alpha Levels and Critical Values
19.3 Practical vs. Statistical Significance
19.4 Errors
Review of Part V: Inference for One Parameter



VI. INFERENCE FOR RELATIONSHIPS

20. Comparing Groups

20.1 A Confidence Interval for the Difference Between Two Proportions
20.2 Assumptions and Conditions for Comparing Proportions
20.3 The Two-Sample z-Test: Testing for the Difference Between Proportions
20.4 A Confidence Interval for the Difference Between Two Means
20.5 The Two-Sample t-Test: Testing for the Difference Between Two Means
20.6 Randomization Tests and Confidence Intervals for Two Means
20.7 Pooling
20.8 The Standard Deviation of a Difference


21. Paired Samples and Blocks

21.1 Paired Data
21.2 The Paired t-Test
21.3 Confidence Intervals for Matched Pairs
21.4 Blocking


22. Comparing Counts

22.1 Goodness-of-Fit Tests
22.2 Chi-Square Test of Homogeneity
22.3 Examining the Residuals
22.4 Chi-Square Test of Independence


23. Inferences for Regression

23.1 The Regression Model
23.2 Assumptions and Conditions
23.3 Regression Inference and Intuition
23.4 The Regression Table
23.5 Multiple Regression Inference
23.6 Confidence and Prediction Intervals
23.7 Logistic Regression
23.8 More About Regression
Review of Part VI: Inference for Relationships



VII. INFERENCE WHEN VARIABLES ARE RELATED

24. Multiple Regression Wisdom

24.1 Multiple Regression Inference
24.2 Comparing Multiple Regression Model
24.3 Indicators
24.4 Diagnosing Regression Models: Looking at the Cases
24.5 Building Multiple Regression Models


25. Analysis of Variance

25.1 Testing Whether the Means of Several Groups Are Equal
25.2 The ANOVA Table
25.3 Assumptions and Conditions
25.4 Comparing Means
25.5 ANOVA on Observational Data


26. Multifactor Analysis of Variance

26.1 A Two Factor ANOVA Model
26.2 Assumptions and Conditions
26.3 Interactions


27. Statistics and Data Science

27.1 Introduction to Data Mining
Review of Part VII: Inference When Variables Are Related





Parts I - V Cumulative Review Exercises

Appendices

Answers
Credits
Indexes
Tables and Selected Formulas

 

最近チェックした商品