Teaching Student-Centered Mathematics Pearson Etext Access Code : Developmentally Appropriate Instruction for Grades 3-5 〈3〉 (3 PSC)

Teaching Student-Centered Mathematics Pearson Etext Access Code : Developmentally Appropriate Instruction for Grades 3-5 〈3〉 (3 PSC)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 421 p.
  • 言語 ENG
  • 商品コード 9780134556406
  • DDC分類 372

Full Description

A practical approach to effective mathematical instruction in grades 3 to 5.
Teaching Student-Centered Mathematics helps students connect mathematics to their worlds and use math in their daily lives. It focuses on specific grade bands and covers creating an effective classroom environment, aligning teaching to various standards and practices, and engaging families.

For courses in Elementary Mathematics Methods (Curriculum & Instruction) and for classroom teachers.

Pearson eText is an easy-to-use digital textbook that you can purchase on your own or instructors can assign for their course. The mobile app lets you keep on learning, no matter where your day takes you, even offline. You can also add highlights, bookmarks, and notes in your Pearson eText to study how you like.

NOTE: This ISBN is for the Pearson eText access card. Pearson eText is a fully digital delivery of Pearson content. Before purchasing, check that you have the correct ISBN. To register for and use Pearson eText, you may also need a course invite link, which your instructor will provide. Follow the instructions provided on the access card to learn more.

Contents

Brief Table of Contents



Part 1: Establishing a Student-Centered Environment



1. Setting a Vision for Learning High-Quality Mathematics 

2. Teaching Mathematics through Problem Solving 

3. Creating Assessments for Learning 

4. Differentiating Instruction 

5. Teaching Culturally and Linguistically Diverse Students 

6. Teaching and Assessing Students with Exceptionalities 

7. Collaborating with Families and Other Stakeholders 



Part 2: Teaching Student-Centered Mathematics



8. Exploring Number and Operation Sense 

9. Developing Basic Fact Fluency 

10. Developing Whole-Number Place-Value Concepts 

11. Building Strategies for Whole-Number Computation 

12. Exploring Fraction Concepts 

13. Building Strategies for Fraction Computation 

14. Developing Decimal and Percent Concepts and Decimal Computation 

15. Promoting Algebraic Thinking 

16. Building Measurement Concepts 

17. Developing Geometric Thinking and Concepts 

18. Representing and Interpreting Data 



Appendix ACommon Core State Standards: Standards for Mathematical Practice 

Appendix BCommon Core State Standards: Grades 3-5 Critical Content Areas and Overviews 

Appendix C Mathematics Teaching Practices: NCTM Principles to Action (2014)

Appendix D Activities at a Glance: Volume II

Appendix E Guide to Blackline Masters

References

Index



Detailed Table of Contents



Part 1: Establishing a Student-Centered Environment



1. Setting a Vision for Learning High-Quality Mathematics  

          Understanding and Doing Mathematics 

          How Do Students Learn? 

          Teaching for Understanding  

          The Importance of Students' Ideas 

          Mathematics Classrooms That Promote Understanding



2. Teaching Mathematics through Problem Solving

          Teaching through Problem Solving: An Upside-Down Approach 

          Mathematics Teaching Practices for Teaching through Problem Solving 

          Using Worthwhile Tasks  

          Orchestrating Classroom Discourse 

          Representations: Tools for Problem Solving, Reasoning, and Communication 

          Lessons in the Problem-Based Classroom 

          Life-Long Learning: An Invitation to Learn and Grow 



3. Creating Assessments for Learning

          Assessment That Informs Instruction 

          Observations 

          Questions 

          Interviews 

          Tasks 

          Students' Self-Assessment and Reflection 

          Rubrics and Their Uses 



4. Differentiating Instruction 

          Differentiation and Teaching Mathematics through Problem Solving 

          The Nuts and Bolts of Differentiating Instruction 

          Differentiated Tasks for Whole-Class Instruction 

          Tiered Lessons 

          Flexible Grouping 



5. Teaching Culturally and Linguistically Diverse Students  

          Culturally and Linguistically Diverse Students 

          Culturally Responsive Mathematics Instruction 

          Teaching Strategies That Support Culturally and Linguistically Diverse Students 

          Assessment Considerations for ELLs 



6. Planning, Teaching, and Assessing Students with Exceptionalities

          Instructional Principles for Diverse Learners 

          Implementing Interventions 

          Teaching and Assessing Students with Learning Disabilities 

          Adapting for Students with Moderate/Severe Disabilities 

          Planning for Students Who Are Mathematically Gifted 



7. Collaborating with Families and Other Stakeholders 

          Sharing the Message with Stakeholders 

          Administrator Engagement and Support 

          Family Engagement 

          Homework Practices and Parent Coaching 



Part 2: Teaching Student-Centered Mathematics



8. Exploring Number and Operation Sense

          Developing Addition and Subtraction Operation Sense 

          Developing Multiplication and Division Operation Sense 

          Multiplication and Division Problem Structures 

          Teaching Multiplication and Division 

          Properties of Multiplication and Division 

          Strategies for Solving Contextual Problems 

          Multistep Word Problems

 

9. Developing Basic Fact Fluency

          Developmental Phases for Learning the Basic Fact Combinations 

          Teaching and Assessing the Basic Fact Combinations 

          Reasoning Strategies for Addition Facts 

          Reasoning Strategies for Subtraction Facts 

          Reasoning Strategies for Multiplication and Division Facts 

          Reinforcing Basic Fact Mastery 



10. Developing Whole-Number Place-Value Concepts

          Extending Number Relationships to Larger Numbers 

          Important Place-Value Concepts 

          Extending Base-Ten Concepts 

          Oral and Written Names for Numbers 

          Patterns and Relationships with Multidigit Numbers 

          Numbers beyond 1000 



11. Building Strategies for Whole-Number Computation

          Toward Computational Fluency 

          Development of Invented Strategies in Addition and Subtraction 

          Standard Algorithms for Addition and Subtraction 

          Invented Strategies for Multiplication 

          Standard Algorithms for Multiplication 

          Invented Strategies for Division 

          Standard Algorithms for Division 



          Computational Estimation 



12. Exploring Fraction Concepts

          Meanings of Fractions 

          Models for Fractions 

          Fractional Parts of a Whole 

          Equivalent Fractions 

          Comparing Fractions 

          Teaching Considerations for Fraction Concepts



13. Building Strategies for Fraction Computation 

          Understanding Fraction Operations 

          Addition and Subtraction 

          Multiplication 

          Division



14. Developing Decimal and Percent Concepts and Decimal Computation

          Developing Concepts of Decimals 

          Connecting Fractions and Decimals 

          Developing Decimal Number Sense 

          Computation with Decimals 

          Introducing Percents 



15. Promoting Algebraic Thinking  

          Strands of Algebraic Thinking 

          Generalized Arithmetic 

          Meaningful Use of Symbols 

          Making Structure in the Number System Explicit 

          Patterns and Functional Thinking 



16. Building Measurement Concepts

          The Meaning and Process of Measuring 

          The Role of Estimation and Approximation 

          Length 

          Area 

          Volume 

          Weight and Mass 

          Angles 

          Time 



          Money 



17. Developing Geometric Thinking and Concepts

          Geometry Goals for Your Students 

          Developing Geometric Thinking 

          Shapes and Properties

          Learning about Transformations 

          Learning about Location 

          Learning about Visualizations



18. Representing and Interpreting Data 

          What Does It Mean to Do Statistics? 

          Formulating Questions 

          Data Collection 

          Data Analysis: Classification 

          Data Analysis: Graphical Representations 

          Interpreting Results



Appendix ACommon Core State Standards: Standards for Mathematical Practice 

Appendix BCommon Core State Standards: Grades 3-5 Critical Content Areas and Overviews 

Appendix C Mathematics Teaching Practices: NCTM Principles to Action (2014)

Appendix D Activities at a Glance: Volume II

Appendix E Guide to Blackline Masters

References

Index

最近チェックした商品