Biosignal Processing and Classification Using Computational Learning and Intelligence : Principles, Algorithms, and Applications

個数:

Biosignal Processing and Classification Using Computational Learning and Intelligence : Principles, Algorithms, and Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 536 p.
  • 言語 ENG
  • 商品コード 9780128201251
  • DDC分類 612.82

Full Description

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others.

Contents

PART 1 INTRODUCTION
1. Introduction to this book
2. Biosignals analysis (heart, phonatory system, and muscles)
3. Neuroimaging techniques

PART 2 BIOSIGNAL PROCESSING: FROM BIOSIGNALS TO FEATURES' DATASETS
4. Pre-processing and feature extraction
5. Dimensionality reduction

PART 3 COMPUTATIONAL LEARNING (MACHINE LEARNING)
6. A brief introduction to supervised, unsupervised, and reinforcement learning
7. Assessing classifier's performance

PART 4 COMPUTATIONAL INTELLIGENCE
8. Fuzzy logic and fuzzy systems
9. Neural networks and deep learning
10. Spiking neural networks and dendrite morphological neural networks: an introduction
11. Bio-inspired algorithms

PART 5 APPLICATIONS AND REVIEWS
12. A survey on EEG-based imagined speech classification
13. P300-based brain-computer interface for communication and control
14. EEG-based subject identification with multi-class classification
15. Emotion recognition: from speech and facial expressions
16. Trends and applications of ECG analysis and classification
17. Analysis and processing of infant cry for diagnosis purposes
18. Physics augmented classification of fNIRS signals
19. Evaluation of mechanical variables by registration and analysis of electromyographic activity
20. A review on machine learning techniques for acute leukemia classification
21. Attention deficit and hyperactivity disorder classification with EEG and machine learning
22. Representation for event-related fMRI

最近チェックした商品