脳と自然に着想を得た学習の計算と認識<br>Brain and Nature-Inspired Learning, Computation and Recognition

個数:
電子版価格
¥40,005
  • 電子版あり

脳と自然に着想を得た学習の計算と認識
Brain and Nature-Inspired Learning, Computation and Recognition

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 788 p.
  • 言語 ENG
  • 商品コード 9780128197950
  • DDC分類 006.3

Full Description

Brain and Nature-Inspired Learning, Computation and Recognition presents a systematic analysis of neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature. Sections cover new developments and main applications, algorithms and simulations. Developments in brain and nature-inspired learning have promoted interest in image processing, clustering problems, change detection, control theory and other disciplines. The book discusses the main problems and applications pertaining to bio-inspired computation and recognition, introducing algorithm implementation, model simulation, and practical application of parameter setting.

Readers will find solutions to problems in computation and recognition, particularly neural networks, natural computing, machine learning and compressed sensing. This volume offers a comprehensive and well-structured introduction to brain and nature-inspired learning, computation, and recognition.

Contents

1. Introduction2. The models and structure of neural network3. Theoretical Basis of Natural Computation4. Theoretical basis of machine learning5. Theoretical basis of compressive sensing6. SAR image7. POLSAR Image Classification8. Hyperspectral Image9. Multiobjective Evolutionary Algorithm (MOEA) based Sparse Clustering10. MOEA Based Community Detection11. Evolutionary Computation Based Multiobjective Capacitated Arc Routing Optimizations12. Multiobjective Optimization Algorithm Based Image Segmentation13. Graph regularized Feature Selection based on spectral learning and subspace learning14. Semi-supervised learning based on mixed knowledge information and nuclear norm regularization15. Fast clustering methods based on learning spectral embedding16. Fast clustering methods based on affinity propagation and density-weighted17. SAR image processing based on similarity measure and discriminant feature learning18. Hyperspectral image processing based on sparse learning and sparse graph19. Non-convex compressed sensing framework based on block strategy and overcomplete dictionary20. The sparse representation combined with FCM in compressed sensing21. Compressed sensing by collaborative reconstruction22. Hyperspectral image classification based on spectral information divergence and sparse representation

最近チェックした商品